Inverse Janus design of two-dimensional Rashba semiconductors

Qikun Tian, Puxuan Li, Jinghui Wei, Ziyu Xing, Guangzhao Qin, Zhenzhen Qin
{"title":"Inverse Janus design of two-dimensional Rashba semiconductors","authors":"Qikun Tian, Puxuan Li, Jinghui Wei, Ziyu Xing, Guangzhao Qin, Zhenzhen Qin","doi":"10.1103/physrevb.108.115130","DOIUrl":null,"url":null,"abstract":"The search for optimal Rashba semiconductors with large Rashba constants, strong electric field responses, and potential thermoelectric properties is pivotal for spin field-effect transistors (SFETs) and Rashba thermoelectric devices. Herein, we employ first-principles calculations to explore the intrinsic Rashba spin splitting in a series of two-dimensional (2D) $XY{Z}_{2}$ (X, $Y=\\mathrm{Si}$, Ge, Sn; $X\\ensuremath{\\ne}Y$; $Z=\\mathrm{P}$, As, Sb, Bi) monolayers via unnatural inverse Janus structural design. Instead of common Janus-type Rashba systems, the $\\mathrm{SiSn}{\\mathrm{Sb}}_{2}$ and $\\mathrm{GeSn}{\\mathrm{Sb}}_{2}$ monolayers within inverse Janus structures are first predicted as ideal Rashba systems with isolated spin-splitting bands near the Fermi level, and the Rashba constants ${\\ensuremath{\\alpha}}_{\\mathrm{R}}$ are calculated as 0.94 and $1.27\\phantom{\\rule{0.16em}{0ex}}\\mathrm{eV}\\phantom{\\rule{0.16em}{0ex}}\\AA{}$, respectively. More importantly, the Rashba effect in such $\\mathrm{SiSn}{\\mathrm{Sb}}_{2}$ and $\\mathrm{GeSn}{\\mathrm{Sb}}_{2}$ monolayers can be more efficiently modulated by the external electric field compared to the biaxial or uniaxial strain, especially with $\\mathrm{GeSn}{\\mathrm{Sb}}_{2}$ monolayer exhibiting a strong electric field response rate of $1.34\\phantom{\\rule{0.16em}{0ex}}\\mathrm{e}{\\AA{}}^{2}$, leading to a short channel length, $L=64\\phantom{\\rule{0.16em}{0ex}}\\mathrm{nm}$. Additionally, owing to the inapplicability of work function and potential energy in assessing built-in electric field $({E}_{in})$ in inverse Janus $\\mathrm{SiSn}{\\mathrm{Sb}}_{2}$ and $\\mathrm{GeSn}{\\mathrm{Sb}}_{2}$ structures, we further propose an effective method to characterize ${E}_{in}$ through a view of fundamental charge transfer to approximately quantize the ${\\ensuremath{\\alpha}}_{\\mathrm{R}}$ and its variation under an external electric field. Our work not only proposes the $\\mathrm{GeSn}{\\mathrm{Sb}}_{2}$ monolayer acting as a promising multifunctional material for potential applications in SFETs and Rashba thermoelectric devices but also inspires future research to introduce Rashba spin splitting in 2D materials through inverse Janus design.","PeriodicalId":20121,"journal":{"name":"Physical Review","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.108.115130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The search for optimal Rashba semiconductors with large Rashba constants, strong electric field responses, and potential thermoelectric properties is pivotal for spin field-effect transistors (SFETs) and Rashba thermoelectric devices. Herein, we employ first-principles calculations to explore the intrinsic Rashba spin splitting in a series of two-dimensional (2D) $XY{Z}_{2}$ (X, $Y=\mathrm{Si}$, Ge, Sn; $X\ensuremath{\ne}Y$; $Z=\mathrm{P}$, As, Sb, Bi) monolayers via unnatural inverse Janus structural design. Instead of common Janus-type Rashba systems, the $\mathrm{SiSn}{\mathrm{Sb}}_{2}$ and $\mathrm{GeSn}{\mathrm{Sb}}_{2}$ monolayers within inverse Janus structures are first predicted as ideal Rashba systems with isolated spin-splitting bands near the Fermi level, and the Rashba constants ${\ensuremath{\alpha}}_{\mathrm{R}}$ are calculated as 0.94 and $1.27\phantom{\rule{0.16em}{0ex}}\mathrm{eV}\phantom{\rule{0.16em}{0ex}}\AA{}$, respectively. More importantly, the Rashba effect in such $\mathrm{SiSn}{\mathrm{Sb}}_{2}$ and $\mathrm{GeSn}{\mathrm{Sb}}_{2}$ monolayers can be more efficiently modulated by the external electric field compared to the biaxial or uniaxial strain, especially with $\mathrm{GeSn}{\mathrm{Sb}}_{2}$ monolayer exhibiting a strong electric field response rate of $1.34\phantom{\rule{0.16em}{0ex}}\mathrm{e}{\AA{}}^{2}$, leading to a short channel length, $L=64\phantom{\rule{0.16em}{0ex}}\mathrm{nm}$. Additionally, owing to the inapplicability of work function and potential energy in assessing built-in electric field $({E}_{in})$ in inverse Janus $\mathrm{SiSn}{\mathrm{Sb}}_{2}$ and $\mathrm{GeSn}{\mathrm{Sb}}_{2}$ structures, we further propose an effective method to characterize ${E}_{in}$ through a view of fundamental charge transfer to approximately quantize the ${\ensuremath{\alpha}}_{\mathrm{R}}$ and its variation under an external electric field. Our work not only proposes the $\mathrm{GeSn}{\mathrm{Sb}}_{2}$ monolayer acting as a promising multifunctional material for potential applications in SFETs and Rashba thermoelectric devices but also inspires future research to introduce Rashba spin splitting in 2D materials through inverse Janus design.
二维Rashba半导体逆Janus设计
寻找具有大Rashba常数、强电场响应和潜在热电性能的最佳Rashba半导体对于自旋场效应晶体管(sfet)和Rashba热电器件至关重要。本文中,我们采用第一性原理计算来探索一系列二维(2D) $XY{Z}_{2}$ (X, $Y=\ mathm {Si}$, Ge, Sn;$ X \ ensuremath {\ ne} Y美元;$Z=\ mathm {P}$, As, Sb, Bi)单分子层非自然逆Janus结构设计。与普通的Janus型Rashba系统不同,本文首先将逆Janus结构中的$\mathrm{SiSn}{\mathrm{Sb}}_{2}$和$\mathrm{GeSn}{\mathrm{Sb}}_{2}$单层预测为在费米能级附近具有孤立自旋分裂带的理想Rashba系统,并计算出Rashba常数${\ensuremath{\alpha}} {\mathrm{R}}$分别为0.94和$1.27\phantom{\rule{0.16em}{0ex}}\mathrm{eV}\phantom{\rule{0.16em}{0ex}}}\AA{}$。更重要的是,与双轴应变或单轴应变相比,$\mathrm{SiSn}{\mathrm{Sb}}_{2}$和$\mathrm{GeSn}}{\mathrm{Sb}}_{2}$单层中的Rashba效应可以更有效地被外电场调制,特别是$\mathrm{GeSn}{\mathrm{Sb}}_{2}$单层的强电场响应率为$1.34\phantom{\rule{0.16em}{0ex}}\mathrm{e}{\AA{}}^{2}$,导致通道长度较短,$L=64\phantom{\rule{0.16em}{0ex}}\mathrm{nm}$。此外,由于在反演Janus $\mathrm{SiSn}{\mathrm{Sb}}{2}$和$\mathrm{GeSn}{\mathrm{Sb}}}{2}$结构中,功函数和势能不适用于评价内置电场$({E}_{in})$,我们进一步提出了一种通过基本电荷转移的观点来表征${E}_{in}$的有效方法,以近似量化${\ensuremath{\alpha}}_{\mathrm{R}}$及其在外电场下的变化。我们的工作不仅提出了$\mathrm{GeSn}{\mathrm{Sb}}{2}$单层作为一种有前途的多功能材料,在sfet和Rashba热电器件中有潜在的应用,而且还启发了未来的研究,通过逆Janus设计在二维材料中引入Rashba自旋分裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信