Melissa L. Starkie, Stephen L. Cameron, Matt N. Krosch, Andrew D. Sweet, Anthony R. Clarke
{"title":"Biogeographic influences on the evolution and historical dispersal of the Australo‐Pacific Dacini fruit flies (Tephritidae: Dacinae)","authors":"Melissa L. Starkie, Stephen L. Cameron, Matt N. Krosch, Andrew D. Sweet, Anthony R. Clarke","doi":"10.1111/zsc.12631","DOIUrl":null,"url":null,"abstract":"Abstract Fruit flies (Tephritidae: Dacini) are a frugivorous insect group that exhibit high endemic diversity in the rainforests of Australia and the western Pacific. In this region, biogeography has been influenced by tectonic plate movements and cycles of isolation and re‐connection of landmasses and rainforest habitats during glacial periods. However, how such factors have influenced the speciation and historical dispersal of the regional Dacini is largely unknown. To address this, we use a dated phylogeny to reconstruct the biogeographical history of the tribe. We found the Dacini radiated eastward into the Pacific islands largely from sources in New Guinea. We also found evidence for historical dispersal from both Australia and New Guinea into New Caledonia, a pathway unique to this island compared with neighbouring islands. There was also evidence for multiple, bidirectional dispersal events between Papua New Guinea and Australia, likely facilitated by the cyclically exposed Torres Strait land bridge. Cape York in far northern Australia was likely the only entry point for species dispersing into Australia; there was no evidence for entry of flies into Australia directly from West Papua or Wallacea. Several lineages radiated after entering Australia, such as members of the Bactrocera dorsalis species group. Within Australia, speciation was not associated with the biogeographic barriers known to have impacted other rainforest fauna in eastern Australia. Overall, we demonstrate that isolation between islands and large landmasses is important in the evolution of the Australo‐Pacific Dacini, but the reason for their extensive radiation within Australia and Papua New Guinea remains unclear.","PeriodicalId":49334,"journal":{"name":"Zoologica Scripta","volume":"2013 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoologica Scripta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/zsc.12631","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Fruit flies (Tephritidae: Dacini) are a frugivorous insect group that exhibit high endemic diversity in the rainforests of Australia and the western Pacific. In this region, biogeography has been influenced by tectonic plate movements and cycles of isolation and re‐connection of landmasses and rainforest habitats during glacial periods. However, how such factors have influenced the speciation and historical dispersal of the regional Dacini is largely unknown. To address this, we use a dated phylogeny to reconstruct the biogeographical history of the tribe. We found the Dacini radiated eastward into the Pacific islands largely from sources in New Guinea. We also found evidence for historical dispersal from both Australia and New Guinea into New Caledonia, a pathway unique to this island compared with neighbouring islands. There was also evidence for multiple, bidirectional dispersal events between Papua New Guinea and Australia, likely facilitated by the cyclically exposed Torres Strait land bridge. Cape York in far northern Australia was likely the only entry point for species dispersing into Australia; there was no evidence for entry of flies into Australia directly from West Papua or Wallacea. Several lineages radiated after entering Australia, such as members of the Bactrocera dorsalis species group. Within Australia, speciation was not associated with the biogeographic barriers known to have impacted other rainforest fauna in eastern Australia. Overall, we demonstrate that isolation between islands and large landmasses is important in the evolution of the Australo‐Pacific Dacini, but the reason for their extensive radiation within Australia and Papua New Guinea remains unclear.
期刊介绍:
Zoologica Scripta publishes papers in animal systematics and phylogeny, i.e. studies of evolutionary relationships among taxa, and the origin and evolution of biological diversity. Papers can also deal with ecological interactions and geographic distributions (phylogeography) if the results are placed in a wider phylogenetic/systematic/evolutionary context. Zoologica Scripta encourages papers on the development of methods for all aspects of phylogenetic inference and biological nomenclature/classification.
Articles published in Zoologica Scripta must be original and present either theoretical or empirical studies of interest to a broad audience in systematics and phylogeny. Purely taxonomic papers, like species descriptions without being placed in a wider systematic/phylogenetic context, will not be considered.