Hongsu Byun, Safdar Jamil, Jungwook Han, Sungyong Park, Myungcheol Lee, Changsoo Kim, Beongjun Choi, Youngjae Kim
{"title":"An Analytical Model-based Capacity Planning Approach for Building CSD-based Storage Systems","authors":"Hongsu Byun, Safdar Jamil, Jungwook Han, Sungyong Park, Myungcheol Lee, Changsoo Kim, Beongjun Choi, Youngjae Kim","doi":"10.1145/3623677","DOIUrl":null,"url":null,"abstract":"The data movement in large-scale computing facilities (from compute nodes to data nodes) is categorized as one of the major contributors to high cost and energy utilization. To tackle it, in-storage processing (ISP) within storage devices, such as Solid-State Drives (SSDs), has been explored actively. The introduction of computational storage drives (CSDs) enabled ISP within the same form factor as regular SSDs and made it easy to replace SSDs within traditional compute nodes. With CSDs, host systems can offload various operations such as search, filter, and count. However, commercialized CSDs have different hardware resources and performance characteristics. Thus, it requires careful consideration of hardware, performance, and workload characteristics for building a CSD-based storage system within a compute node. Therefore, storage architects are hesitant to build a storage system based on CSDs as there are no tools to determine the benefits of CSD-based compute nodes to meet the performance requirements compared to traditional nodes based on SSDs. In this work, we proposed an analytical model-based storage capacity planner called CsdPlan for system architects to build performance-effective CSD-based compute nodes. Our model takes into account the performance characteristics of the host system, targeted workloads, and hardware and performance characteristics of CSDs to be deployed and provides optimal configuration based on the number of CSDs for a compute node. Furthermore, CsdPlan estimates and reduces the total cost of ownership (TCO) for building a CSD-based compute node. To evaluate the efficacy of CsdPlan , we selected two commercially available CSDs and 4 representative big data analysis workloads.","PeriodicalId":50914,"journal":{"name":"ACM Transactions on Embedded Computing Systems","volume":"214 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Embedded Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3623677","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The data movement in large-scale computing facilities (from compute nodes to data nodes) is categorized as one of the major contributors to high cost and energy utilization. To tackle it, in-storage processing (ISP) within storage devices, such as Solid-State Drives (SSDs), has been explored actively. The introduction of computational storage drives (CSDs) enabled ISP within the same form factor as regular SSDs and made it easy to replace SSDs within traditional compute nodes. With CSDs, host systems can offload various operations such as search, filter, and count. However, commercialized CSDs have different hardware resources and performance characteristics. Thus, it requires careful consideration of hardware, performance, and workload characteristics for building a CSD-based storage system within a compute node. Therefore, storage architects are hesitant to build a storage system based on CSDs as there are no tools to determine the benefits of CSD-based compute nodes to meet the performance requirements compared to traditional nodes based on SSDs. In this work, we proposed an analytical model-based storage capacity planner called CsdPlan for system architects to build performance-effective CSD-based compute nodes. Our model takes into account the performance characteristics of the host system, targeted workloads, and hardware and performance characteristics of CSDs to be deployed and provides optimal configuration based on the number of CSDs for a compute node. Furthermore, CsdPlan estimates and reduces the total cost of ownership (TCO) for building a CSD-based compute node. To evaluate the efficacy of CsdPlan , we selected two commercially available CSDs and 4 representative big data analysis workloads.
期刊介绍:
The design of embedded computing systems, both the software and hardware, increasingly relies on sophisticated algorithms, analytical models, and methodologies. ACM Transactions on Embedded Computing Systems (TECS) aims to present the leading work relating to the analysis, design, behavior, and experience with embedded computing systems.