{"title":"Efficient implementation of low-order-precision smoothed particle hydrodynamics","authors":"Natsuki Hosono, Mikito Furuichi","doi":"10.1177/10943420231201144","DOIUrl":null,"url":null,"abstract":"Smoothed particle hydrodynamics (SPH) method is widely accepted as a flexible numerical treatment for surface boundaries and interactions. High-resolution simulations of hydrodynamic events require high-performance computing (HPC). There is a need for an SPH code that runs efficiently on modern supercomputers involving accelerators such as NVIDIA or AMD graphics processing units. In this work, we applied half-precision, which is widely used in artificial intelligence, to the SPH method. However, improving HPC performance at such low-order precisions is a challenge. An as-is implementation with half-precision will have lower computational cost than that of float/double precision simulations, but also worsens the simulation accuracy. We propose a scaling and shifting method that maintains the simulation accuracy near the level of float/double precision. By examining the impact of half-precision on the simulation accuracy and time-to-solution, we demonstrated that the use of half-precision can improve the computational performance of SPH simulations for scientific purposes without sacrificing the accuracy. In addition, we demonstrated that the efficiency of half-precision depends on the architecture used.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"26 1","pages":"0"},"PeriodicalIF":3.5000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10943420231201144","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Smoothed particle hydrodynamics (SPH) method is widely accepted as a flexible numerical treatment for surface boundaries and interactions. High-resolution simulations of hydrodynamic events require high-performance computing (HPC). There is a need for an SPH code that runs efficiently on modern supercomputers involving accelerators such as NVIDIA or AMD graphics processing units. In this work, we applied half-precision, which is widely used in artificial intelligence, to the SPH method. However, improving HPC performance at such low-order precisions is a challenge. An as-is implementation with half-precision will have lower computational cost than that of float/double precision simulations, but also worsens the simulation accuracy. We propose a scaling and shifting method that maintains the simulation accuracy near the level of float/double precision. By examining the impact of half-precision on the simulation accuracy and time-to-solution, we demonstrated that the use of half-precision can improve the computational performance of SPH simulations for scientific purposes without sacrificing the accuracy. In addition, we demonstrated that the efficiency of half-precision depends on the architecture used.
期刊介绍:
With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.