On pseudo-Hermitian quadratic nilpotent lie algebras

IF 0.4 Q4 MATHEMATICS
Mustapha Bachaou, Ignacio Bajo, Mohamed Louzari
{"title":"On pseudo-Hermitian quadratic nilpotent lie algebras","authors":"Mustapha Bachaou, Ignacio Bajo, Mohamed Louzari","doi":"10.1007/s13366-023-00714-x","DOIUrl":null,"url":null,"abstract":"Abstract We study nilpotent Lie algebras endowed with a complex structure and a quadratic structure which is pseudo-Hermitian for the given complex structure. We propose several methods to construct such Lie algebras and describe a method of double extension by planes to get an inductive description of all of them. As an application, we give a complete classification of nilpotent quadratic Lie algebras where the metric is Lorentz-Hermitian and we fully classify all nilpotent pseudo-Hermitian quadratic Lie algebras up to dimension 8 and their inequivalent pseudo-Hermitian metrics.","PeriodicalId":44678,"journal":{"name":"Beitrage zur Algebra und Geometrie-Contributions to Algebra and Geometry","volume":"4 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beitrage zur Algebra und Geometrie-Contributions to Algebra and Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13366-023-00714-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We study nilpotent Lie algebras endowed with a complex structure and a quadratic structure which is pseudo-Hermitian for the given complex structure. We propose several methods to construct such Lie algebras and describe a method of double extension by planes to get an inductive description of all of them. As an application, we give a complete classification of nilpotent quadratic Lie algebras where the metric is Lorentz-Hermitian and we fully classify all nilpotent pseudo-Hermitian quadratic Lie algebras up to dimension 8 and their inequivalent pseudo-Hermitian metrics.
关于伪厄密二次幂零李代数
摘要研究了具有复结构的幂零李代数和具有给定复结构的伪厄密二次结构的幂零李代数。我们提出了几种构造这类李代数的方法,并描述了一种平面双扩展的方法,得到了它们的归纳描述。作为应用,我们给出了度量为lorenz - hermite的幂零二次李代数的完全分类,并对8维以下的所有幂零伪厄米二次李代数及其等价伪厄米李代数进行了完全分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
56
期刊介绍: The Journal "Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry" was founded in 1971 on the occasion of the 65th birthday of O.-H. Keller. It publishes research articles in the areas of algebra, geometry, algebraic geometry and related fields, preferably in English language. The back issues of the journal are available at the European Digital Mathematics Library (EuDML) at: https://eudml.org/journal/10170 (Vols. 1-33, 1971-1992) https://eudml.org/journal/10084 (Vols. 34-51, 1993-2010)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信