Robust internal representations for domain generalization

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Ai Magazine Pub Date : 2023-10-26 DOI:10.1002/aaai.12137
Mohammad Rostami
{"title":"Robust internal representations for domain generalization","authors":"Mohammad Rostami","doi":"10.1002/aaai.12137","DOIUrl":null,"url":null,"abstract":"<p>This paper, which is part of the New Faculty Highlights Invited Speaker Program of AAAI'23, serves as a comprehensive survey of my research in transfer learning by utilizing embedding spaces. The work reviewed in this paper specifically revolves around the inherent challenges associated with continual learning and limited availability of labeled data. By providing an overview of my past and ongoing contributions, this paper aims to present a holistic understanding of my research, paving the way for future explorations and advancements in the field. My research delves into the various settings of transfer learning, including, few-shot learning, zero-shot learning, continual learning, domain adaptation, and distributed learning. I hope this survey provides a forward-looking perspective for researchers who would like to focus on similar research directions.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"44 4","pages":"467-481"},"PeriodicalIF":2.5000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12137","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12137","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper, which is part of the New Faculty Highlights Invited Speaker Program of AAAI'23, serves as a comprehensive survey of my research in transfer learning by utilizing embedding spaces. The work reviewed in this paper specifically revolves around the inherent challenges associated with continual learning and limited availability of labeled data. By providing an overview of my past and ongoing contributions, this paper aims to present a holistic understanding of my research, paving the way for future explorations and advancements in the field. My research delves into the various settings of transfer learning, including, few-shot learning, zero-shot learning, continual learning, domain adaptation, and distributed learning. I hope this survey provides a forward-looking perspective for researchers who would like to focus on similar research directions.

用于领域泛化的强大内部表征
这篇论文是 AAAI'23 新教师亮点特邀演讲计划的一部分,是对我利用嵌入空间进行迁移学习研究的全面调查。本文所回顾的工作特别围绕与持续学习和标记数据可用性有限相关的固有挑战展开。通过概述我过去和现在的贡献,本文旨在全面介绍我的研究,为该领域未来的探索和进步铺平道路。我的研究深入探讨了迁移学习的各种设置,包括少次学习、零次学习、持续学习、领域适应和分布式学习。我希望这份调查报告能为希望关注类似研究方向的研究人员提供一个前瞻性视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ai Magazine
Ai Magazine 工程技术-计算机:人工智能
CiteScore
3.90
自引率
11.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信