{"title":"An Interface Preserving Moving Mesh in Multiple Space Dimensions","authors":"Maria Alkämper, Jim Magiera, Christian Rohde","doi":"10.1145/3630000","DOIUrl":null,"url":null,"abstract":"An interface preserving moving mesh algorithm in two or higher dimensions is presented. It resolves a moving ( d − 1)-dimensional manifold directly within the d -dimensional mesh, which means that the interface is represented by a subset of moving mesh cell-surfaces. The underlying mesh is a conforming simplicial partition that fulfills the Delaunay property. The local remeshing algorithms allow for strong interface deformations. We give a proof that the given algorithms preserve the interface after interface deformation and remeshing steps. Originating from various numerical methods, data is attached cell-wise to the mesh. After each remeshing operation the interface preserving moving mesh retains valid data by projecting the data to the new mesh cells. An open source implementation of the moving mesh algorithm is available at [1].","PeriodicalId":50935,"journal":{"name":"ACM Transactions on Mathematical Software","volume":"42 6","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3630000","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 1
Abstract
An interface preserving moving mesh algorithm in two or higher dimensions is presented. It resolves a moving ( d − 1)-dimensional manifold directly within the d -dimensional mesh, which means that the interface is represented by a subset of moving mesh cell-surfaces. The underlying mesh is a conforming simplicial partition that fulfills the Delaunay property. The local remeshing algorithms allow for strong interface deformations. We give a proof that the given algorithms preserve the interface after interface deformation and remeshing steps. Originating from various numerical methods, data is attached cell-wise to the mesh. After each remeshing operation the interface preserving moving mesh retains valid data by projecting the data to the new mesh cells. An open source implementation of the moving mesh algorithm is available at [1].
期刊介绍:
As a scientific journal, ACM Transactions on Mathematical Software (TOMS) documents the theoretical underpinnings of numeric, symbolic, algebraic, and geometric computing applications. It focuses on analysis and construction of algorithms and programs, and the interaction of programs and architecture. Algorithms documented in TOMS are available as the Collected Algorithms of the ACM at calgo.acm.org.