Research on the Investment Strategy of Private Equity Investment Fund Targeted Increase in NEEQ — An Empirical Analysis Based on BP and Hopfield Neural Network Model
IF 0.8 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
{"title":"Research on the Investment Strategy of Private Equity Investment Fund Targeted Increase in NEEQ — An Empirical Analysis Based on BP and Hopfield Neural Network Model","authors":"Liu Yajuan, Xu Wenbin","doi":"10.1142/s1469026823420014","DOIUrl":null,"url":null,"abstract":"Private equity investment funds targeted increase in NEEQ has become a new strategy for PE investment. However, the currently adopted Logit regression and one-factor ANOVA models are not suitable for analyzing nonlinear investment activities, and the investment appraisal does not work well. In this paper, all NEEQ companies that implemented private placement in 2017 are used as the study sample. This paper also empirically analyzes the current situation of domestic private equity investment funds based on BP and Hopfield neural network models, then the results of the two models are compared. It is concluded that the accuracy of the BP neural network model can be more than 90%. So, the BP neural network can be used as the optimal model of private equity investment funds investment strategy in NEEQ.","PeriodicalId":45994,"journal":{"name":"International Journal of Computational Intelligence and Applications","volume":"19 04","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Intelligence and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1469026823420014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Private equity investment funds targeted increase in NEEQ has become a new strategy for PE investment. However, the currently adopted Logit regression and one-factor ANOVA models are not suitable for analyzing nonlinear investment activities, and the investment appraisal does not work well. In this paper, all NEEQ companies that implemented private placement in 2017 are used as the study sample. This paper also empirically analyzes the current situation of domestic private equity investment funds based on BP and Hopfield neural network models, then the results of the two models are compared. It is concluded that the accuracy of the BP neural network model can be more than 90%. So, the BP neural network can be used as the optimal model of private equity investment funds investment strategy in NEEQ.
期刊介绍:
The International Journal of Computational Intelligence and Applications, IJCIA, is a refereed journal dedicated to the theory and applications of computational intelligence (artificial neural networks, fuzzy systems, evolutionary computation and hybrid systems). The main goal of this journal is to provide the scientific community and industry with a vehicle whereby ideas using two or more conventional and computational intelligence based techniques could be discussed. The IJCIA welcomes original works in areas such as neural networks, fuzzy logic, evolutionary computation, pattern recognition, hybrid intelligent systems, symbolic machine learning, statistical models, image/audio/video compression and retrieval.