Weyl asymptotics for fractional-order Dirichlet realizations in nonsmooth cases

IF 0.3 4区 数学 Q4 MATHEMATICS
Gerd Grubb
{"title":"Weyl asymptotics for fractional-order Dirichlet realizations in nonsmooth cases","authors":"Gerd Grubb","doi":"10.7146/math.scand.a-138002","DOIUrl":null,"url":null,"abstract":"Let $P$ be a symmetric $2a$-order classical strongly elliptic pseudodifferential operator with \\emph{even} symbol $p(x,\\xi)$ on $\\mathbb{R}^n $ ($0<a<1$), for example a perturbation of $(-\\Delta )^a$. Let $\\Omega \\subset \\mathbb{R}^n$ be bounded, and let $P_D$ be the Dirichlet realization in $L_2(\\Omega)$ defined under the exterior condition $u=0$ in $\\mathbb{R}^n\\setminus\\Omega$. When $p(x,\\xi)$ and $\\Omega$ are $C^\\infty $, it is known that the eigenvalues $\\lambda_j$ (ordered in a nondecreasing sequence for $j\\to \\infty$) satisfy a Weyl asymptotic formula \\begin{equation*} \\lambda _j(P_{D})=C(P,\\Omega )j^{2a/n}+o(j^{2a/n}) \\text {for $j\\to \\infty $}, \\end{equation*} with $C(P,\\Omega)$ determined from the principal symbol of $P$. We now show that this result is valid for more general operators with a possibly nonsmooth $x$-dependence, over Lipschitz domains, and that it extends to $\\tilde P=P+P'+P”$, where $P'$ is an operator of order $<\\min\\{2a, a+\\frac 12\\}$ with certain mapping properties, and $P”$ is bounded in $L_2(\\Omega )$ (e.g. $P”=V(x)\\in L_\\infty(\\Omega)$). Also the regularity of eigenfunctions of $P_D$ is discussed.","PeriodicalId":49873,"journal":{"name":"Mathematica Scandinavica","volume":"37 6","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Scandinavica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/math.scand.a-138002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Let $P$ be a symmetric $2a$-order classical strongly elliptic pseudodifferential operator with \emph{even} symbol $p(x,\xi)$ on $\mathbb{R}^n $ ($0
非光滑情况下分数阶Dirichlet实现的Weyl渐近性
设$P$为一个对称的$2a$阶经典强椭圆伪微分算子,在$\mathbb{R}^n $ ($0<a<1$)上具有\emph{偶数}符号$p(x,\xi)$,例如$(-\Delta )^a$的扰动。设$\Omega \subset \mathbb{R}^n$有界,设$P_D$为$\mathbb{R}^n\setminus\Omega$中在外部条件$u=0$下定义的$L_2(\Omega)$中的狄利克雷实现。当$p(x,\xi)$和$\Omega$为$C^\infty $时,已知特征值$\lambda_j$(对$j\to \infty$按非递减序列排序)满足Weyl渐近公式\begin{equation*} \lambda _j(P_{D})=C(P,\Omega )j^{2a/n}+o(j^{2a/n}) \text {for $j\to \infty $}, \end{equation*},其中$C(P,\Omega)$由$P$的主符号确定。我们现在证明了这个结果对更一般的算子是有效的,它们可能具有非光滑的$x$依赖,在Lipschitz域中,并且它扩展到$\tilde P=P+P'+P”$,其中$P'$是一个具有一定映射属性的$<\min\{2a, a+\frac 12\}$阶算子,并且$P”$在$L_2(\Omega )$(例如$P”=V(x)\in L_\infty(\Omega)$)中有界。并讨论了$P_D$的特征函数的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematica Scandinavica
Mathematica Scandinavica 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Mathematica Scandinavica is a peer-reviewed journal in mathematics that has been published regularly since 1953. Mathematica Scandinavica is run on a non-profit basis by the five mathematical societies in Scandinavia. It is the aim of the journal to publish high quality mathematical articles of moderate length. Mathematica Scandinavica publishes about 640 pages per year. For 2020, these will be published as one volume consisting of 3 issues (of 160, 240 and 240 pages, respectively), enabling a slight increase in article pages compared to previous years. The journal aims to publish the first issue by the end of March. Subsequent issues will follow at intervals of approximately 4 months. All back volumes are available in paper and online from 1953. There is free access to online articles more than five years old.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信