Weyl asymptotics for fractional-order Dirichlet realizations in nonsmooth cases

Pub Date : 2023-10-26 DOI:10.7146/math.scand.a-138002
Gerd Grubb
{"title":"Weyl asymptotics for fractional-order Dirichlet realizations in nonsmooth cases","authors":"Gerd Grubb","doi":"10.7146/math.scand.a-138002","DOIUrl":null,"url":null,"abstract":"Let $P$ be a symmetric $2a$-order classical strongly elliptic pseudodifferential operator with \\emph{even} symbol $p(x,\\xi)$ on $\\mathbb{R}^n $ ($0<a<1$), for example a perturbation of $(-\\Delta )^a$. Let $\\Omega \\subset \\mathbb{R}^n$ be bounded, and let $P_D$ be the Dirichlet realization in $L_2(\\Omega)$ defined under the exterior condition $u=0$ in $\\mathbb{R}^n\\setminus\\Omega$. When $p(x,\\xi)$ and $\\Omega$ are $C^\\infty $, it is known that the eigenvalues $\\lambda_j$ (ordered in a nondecreasing sequence for $j\\to \\infty$) satisfy a Weyl asymptotic formula \\begin{equation*} \\lambda _j(P_{D})=C(P,\\Omega )j^{2a/n}+o(j^{2a/n}) \\text {for $j\\to \\infty $}, \\end{equation*} with $C(P,\\Omega)$ determined from the principal symbol of $P$. We now show that this result is valid for more general operators with a possibly nonsmooth $x$-dependence, over Lipschitz domains, and that it extends to $\\tilde P=P+P'+P”$, where $P'$ is an operator of order $<\\min\\{2a, a+\\frac 12\\}$ with certain mapping properties, and $P”$ is bounded in $L_2(\\Omega )$ (e.g. $P”=V(x)\\in L_\\infty(\\Omega)$). Also the regularity of eigenfunctions of $P_D$ is discussed.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/math.scand.a-138002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $P$ be a symmetric $2a$-order classical strongly elliptic pseudodifferential operator with \emph{even} symbol $p(x,\xi)$ on $\mathbb{R}^n $ ($0
分享
查看原文
非光滑情况下分数阶Dirichlet实现的Weyl渐近性
设$P$为一个对称的$2a$阶经典强椭圆伪微分算子,在$\mathbb{R}^n $ ($0<a<1$)上具有\emph{偶数}符号$p(x,\xi)$,例如$(-\Delta )^a$的扰动。设$\Omega \subset \mathbb{R}^n$有界,设$P_D$为$\mathbb{R}^n\setminus\Omega$中在外部条件$u=0$下定义的$L_2(\Omega)$中的狄利克雷实现。当$p(x,\xi)$和$\Omega$为$C^\infty $时,已知特征值$\lambda_j$(对$j\to \infty$按非递减序列排序)满足Weyl渐近公式\begin{equation*} \lambda _j(P_{D})=C(P,\Omega )j^{2a/n}+o(j^{2a/n}) \text {for $j\to \infty $}, \end{equation*},其中$C(P,\Omega)$由$P$的主符号确定。我们现在证明了这个结果对更一般的算子是有效的,它们可能具有非光滑的$x$依赖,在Lipschitz域中,并且它扩展到$\tilde P=P+P'+P”$,其中$P'$是一个具有一定映射属性的$<\min\{2a, a+\frac 12\}$阶算子,并且$P”$在$L_2(\Omega )$(例如$P”=V(x)\in L_\infty(\Omega)$)中有界。并讨论了$P_D$的特征函数的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信