Finitely presented isomorphisms of Cuntz-Krieger algebras and continuous orbit equivalence of one-sided topological Markov shifts

Pub Date : 2023-10-26 DOI:10.7146/math.scand.a-139804
Kengo Matsumoto
{"title":"Finitely presented isomorphisms of Cuntz-Krieger algebras and continuous orbit equivalence of one-sided topological Markov shifts","authors":"Kengo Matsumoto","doi":"10.7146/math.scand.a-139804","DOIUrl":null,"url":null,"abstract":"We introduce the notion of finitely presented isomorphism between Cuntz–Krieger algebras, and of finitely presented isomorphic Cuntz–Krieger algebras. We prove that there exists a finitely presented isomorphism between Cuntz–Krieger algebras $\\mathcal{O}_A$ and $\\mathcal{O}_B$ if and only if their one-sided topological Markov shifts $(X_A,\\sigma_A)$ and $(X_B,\\sigma_B)$ are continuously orbit equivalent. Hence the value $\\det (I-A)$ is a complete invariant for the existence of a finitely presented isomorphism between isomorphic Cuntz–Krieger algebras, so that there exists a pair of Cuntz–Krieger algebras which are isomorphic but not finitely presented isomorphic.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7146/math.scand.a-139804","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the notion of finitely presented isomorphism between Cuntz–Krieger algebras, and of finitely presented isomorphic Cuntz–Krieger algebras. We prove that there exists a finitely presented isomorphism between Cuntz–Krieger algebras $\mathcal{O}_A$ and $\mathcal{O}_B$ if and only if their one-sided topological Markov shifts $(X_A,\sigma_A)$ and $(X_B,\sigma_B)$ are continuously orbit equivalent. Hence the value $\det (I-A)$ is a complete invariant for the existence of a finitely presented isomorphism between isomorphic Cuntz–Krieger algebras, so that there exists a pair of Cuntz–Krieger algebras which are isomorphic but not finitely presented isomorphic.
分享
查看原文
有限表示的Cuntz-Krieger代数同构及单侧拓扑马尔可夫位移的连续轨道等价
引入了有限表示同构的概念,以及有限表示同构的概念。我们证明了Cuntz-Krieger代数$\mathcal{O}_A$和$\mathcal{O}_B$之间存在有限呈现同构,当且仅当它们的单侧拓扑马尔可夫位移$(X_A,\sigma_A)$和$(X_B,\sigma_B)$连续轨道等价。因此值$\det (I-A)$是证明同构的Cuntz-Krieger代数之间存在有限呈现同构的完全不变量,从而存在一对同构但不有限呈现同构的Cuntz-Krieger代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信