Pemodelan Gaya Belajar Siswa dengan Menggunakan Support Vector Machine

Bagas Dwi Pranata, Umi Mahdiyah, Patmi Kasih
{"title":"Pemodelan Gaya Belajar Siswa dengan Menggunakan Support Vector Machine","authors":"Bagas Dwi Pranata, Umi Mahdiyah, Patmi Kasih","doi":"10.29407/noe.v6i2.20884","DOIUrl":null,"url":null,"abstract":"Gaya belajar siswa memiliki pengaruh signifikan dalam pemahaman dan penyerapan materi pelajaran. Penelitian ini bertujuan untuk menggunakan metode Support Vector Machine (SVM) dalam mengklasifikasikan gaya belajar siswa dan membentuk kelompok belajar yang sesuai. Dalam penelitian ini, data gaya belajar siswa dikumpulkan dan dianalisis menggunakan SVM sebagai algoritme klasifikasi. Evaluasi hasil menunjukkan tingkat akurasi sebesar 88% dengan confusion matrix. Hasil ini mengindikasikan bahwa SVM efektif dalam menentukan kelompok belajar yang serupa berdasarkan gaya belajar siswa. Penelitian ini memberikan kontribusi penting dalam memahami pentingnya penyesuaian gaya belajar siswa, yang memungkinkan guru untuk mengoptimalkan pengelompokan siswa berdasarkan gaya belajar individu mereka. Selain itu, hasil evaluasi juga memberikan informasi lengkap tentang kinerja model SVM termasuk confusion matrix. Dengan tingkat akurasi yang memadai, penelitian ini dapat mendukung pengembangan lingkungan pembelajaran yang inklusif, responsif, dan efektif bagi siswa.","PeriodicalId":473074,"journal":{"name":"Nusantara of Engineering (NOE)","volume":"39 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nusantara of Engineering (NOE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29407/noe.v6i2.20884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gaya belajar siswa memiliki pengaruh signifikan dalam pemahaman dan penyerapan materi pelajaran. Penelitian ini bertujuan untuk menggunakan metode Support Vector Machine (SVM) dalam mengklasifikasikan gaya belajar siswa dan membentuk kelompok belajar yang sesuai. Dalam penelitian ini, data gaya belajar siswa dikumpulkan dan dianalisis menggunakan SVM sebagai algoritme klasifikasi. Evaluasi hasil menunjukkan tingkat akurasi sebesar 88% dengan confusion matrix. Hasil ini mengindikasikan bahwa SVM efektif dalam menentukan kelompok belajar yang serupa berdasarkan gaya belajar siswa. Penelitian ini memberikan kontribusi penting dalam memahami pentingnya penyesuaian gaya belajar siswa, yang memungkinkan guru untuk mengoptimalkan pengelompokan siswa berdasarkan gaya belajar individu mereka. Selain itu, hasil evaluasi juga memberikan informasi lengkap tentang kinerja model SVM termasuk confusion matrix. Dengan tingkat akurasi yang memadai, penelitian ini dapat mendukung pengembangan lingkungan pembelajaran yang inklusif, responsif, dan efektif bagi siswa.
使用扶球机来模拟学生的学习风格
学生的学习风格对理解和吸收教材有重大影响。本研究的目标是使用支持机(SVM)来分类学生的学习风格,并形成一个适当的学习小组。在本研究中,采用SVM作为分类算法对学生风格数据进行分析。结果评估显示,孔子矩阵的准确性为88%。这一结果表明,SVM在基于学生学习风格的基础上有效地指定了类似的学习小组。本研究对理解学生学习风格的重要性做出了重要贡献,使教师能够根据学生的个人学习风格优化学生群体。此外,评估结果还提供了包含孔子矩阵在内的SVM模型的完整工作信息。有了足够的准确性,本研究可以支持对学生进行包容性、反应性和有效的学习环境发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信