Biosignature preparation for ocean worlds (BioPOW) instrument prototype

IF 2.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Korine A. Duval, Tessa B. Van Volkenburg, Kathleen L. Craft, Chanel M. Person, John S. Harshman, Diarny O. Fernandes, Jennifer S. Benzing, Emil G. McDowell, Tyler W. Nelson, Gautham S. Divakar, Owen M. Pochettino, Mark E. Perry, Christopher E. Bradburne
{"title":"Biosignature preparation for ocean worlds (BioPOW) instrument prototype","authors":"Korine A. Duval, Tessa B. Van Volkenburg, Kathleen L. Craft, Chanel M. Person, John S. Harshman, Diarny O. Fernandes, Jennifer S. Benzing, Emil G. McDowell, Tyler W. Nelson, Gautham S. Divakar, Owen M. Pochettino, Mark E. Perry, Christopher E. Bradburne","doi":"10.3389/fspas.2023.1244682","DOIUrl":null,"url":null,"abstract":"In situ sampling missions to detect biosignatures on ocean worlds requires thorough sample preparation to manage the expected chemical complexity of such environments. Proposed instruments must be capable of automatic liquid sample handling to ensure sensitive and accurate detections of biosignatures, regardless of the initial chemical composition. Herein, we outline the design, build, and test of the integrated Biosignature Preparation for Ocean Worlds (BioPOW) system capable of purifying amino acids from icy samples. This four step modular instrument 1) melts ice samples, 2) purifies amino acids via cation exchange chromatography, 3) concentrates via vacuum drying, and 4) derivatizes amino acids to volatilize and enable detection with downstream analytical instruments. Initial experiments validated the thermal performance of the system by melting ice in the sample cup (1 mL sample, 3°C–28°C, <5 min, 1.4 kJ) and heating the derivatization tank past the concentration temperature (20°C–60°C, 12 min, 3.6 kJ) to the derivatization temperature (60°C–90°C, 25 min, 7.5 kJ). Later experiments investigated important factors for automatic cation exchange using a design of experiments approach, and found that initial salt concentration, sample and eluate flow rates, and water wash volumes all play significant roles in reducing conductivity (1.1 x–6.7 x) while maintaining phenylalanine yields between 31% and 94%. The modules were then integrated into a 12 cm × 20 cm × 20 cm fieldable platform for analysis, and the maturation of this design for future spaceflight is discussed.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":"37 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fspas.2023.1244682","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In situ sampling missions to detect biosignatures on ocean worlds requires thorough sample preparation to manage the expected chemical complexity of such environments. Proposed instruments must be capable of automatic liquid sample handling to ensure sensitive and accurate detections of biosignatures, regardless of the initial chemical composition. Herein, we outline the design, build, and test of the integrated Biosignature Preparation for Ocean Worlds (BioPOW) system capable of purifying amino acids from icy samples. This four step modular instrument 1) melts ice samples, 2) purifies amino acids via cation exchange chromatography, 3) concentrates via vacuum drying, and 4) derivatizes amino acids to volatilize and enable detection with downstream analytical instruments. Initial experiments validated the thermal performance of the system by melting ice in the sample cup (1 mL sample, 3°C–28°C, <5 min, 1.4 kJ) and heating the derivatization tank past the concentration temperature (20°C–60°C, 12 min, 3.6 kJ) to the derivatization temperature (60°C–90°C, 25 min, 7.5 kJ). Later experiments investigated important factors for automatic cation exchange using a design of experiments approach, and found that initial salt concentration, sample and eluate flow rates, and water wash volumes all play significant roles in reducing conductivity (1.1 x–6.7 x) while maintaining phenylalanine yields between 31% and 94%. The modules were then integrated into a 12 cm × 20 cm × 20 cm fieldable platform for analysis, and the maturation of this design for future spaceflight is discussed.
海洋世界生物签名制备(BioPOW)仪器样机
探测海洋世界生物特征的原位采样任务需要彻底的样品准备,以管理这种环境中预期的化学复杂性。建议的仪器必须能够自动液体样品处理,以确保敏感和准确的生物特征检测,而不管初始化学成分如何。在此,我们概述了能够从冰样品中纯化氨基酸的集成生物签名制备海洋世界(BioPOW)系统的设计,构建和测试。这个四步模块化仪器1)融化冰样,2)通过阳离子交换色谱纯化氨基酸,3)通过真空干燥浓缩,4)衍生化氨基酸挥发并使下游分析仪器能够检测。初始实验通过在样品杯中融化冰(1ml样品,3°C - 28°C, 5分钟,1.4 kJ),并将衍生化槽加热超过浓度温度(20°C - 60°C, 12分钟,3.6 kJ)至衍生化温度(60°C - 90°C, 25分钟,7.5 kJ)来验证系统的热性能。随后的实验使用实验设计方法研究了自动阳离子交换的重要因素,发现初始盐浓度、样品和洗脱液流速以及水洗体积都对降低电导率(1.1 x - 6.7 x)发挥重要作用,同时将苯丙氨酸产率保持在31%至94%之间。然后将这些模块集成到一个12 cm × 20 cm × 20 cm的可现场平台上进行分析,并讨论了该设计在未来航天飞行中的成熟度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Astronomy and Space Sciences
Frontiers in Astronomy and Space Sciences ASTRONOMY & ASTROPHYSICS-
CiteScore
3.40
自引率
13.30%
发文量
363
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信