{"title":"Research on human sleep improvement method based on DQN","authors":"Yunzhi Tian, Qiang Zhou, Wan Li","doi":"10.3233/ais-230294","DOIUrl":null,"url":null,"abstract":"To solve the problems of sleep disorders such as difficulty in falling asleep and insufficient sleep depth caused by uncomfortable indoor temperature, this paper proposes a deep reinforcement learning method based on deep Q-network (DQN) with human sleep electroencephalogram (EEG) as input to improve human sleep. Firstly, the EEG is subjected to a short-time Fourier transform to construct a time-frequency feature data set, which is used as input to DQN along with temperature. Secondly, the agent performs environmental interaction actions in each time step and returns a reward value. Finally, the optimal strategy for indoor temperature control is formulated by the agent. The simulation results show that this method can dynamically adjust the indoor temperature to the optimal temperature for human sleep, and can alleviate sleep disorders, which has certain practical significance","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"15 3","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ais-230294","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
To solve the problems of sleep disorders such as difficulty in falling asleep and insufficient sleep depth caused by uncomfortable indoor temperature, this paper proposes a deep reinforcement learning method based on deep Q-network (DQN) with human sleep electroencephalogram (EEG) as input to improve human sleep. Firstly, the EEG is subjected to a short-time Fourier transform to construct a time-frequency feature data set, which is used as input to DQN along with temperature. Secondly, the agent performs environmental interaction actions in each time step and returns a reward value. Finally, the optimal strategy for indoor temperature control is formulated by the agent. The simulation results show that this method can dynamically adjust the indoor temperature to the optimal temperature for human sleep, and can alleviate sleep disorders, which has certain practical significance
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.