Jose Luis Flores-Pon, Marco Antonio Bedolla, Peter Sloane, Alfredo Raya
{"title":"Evolution of pion mass with temperature","authors":"Jose Luis Flores-Pon, Marco Antonio Bedolla, Peter Sloane, Alfredo Raya","doi":"10.31349/suplrevmexfis.4.021124","DOIUrl":null,"url":null,"abstract":"We study the evolution of light quarks with isospin symmetry and the pion masses in the presence of a thermal bath and study their temperature dependence. In addition, we analyze the inclusion of a coupling with temperature dependence. We attempt to study the dissolution of bound-states at temperatures higher than the critical temperature, but we found that the model shows that the bound-state's mass increases. We base our study on a momentum-independent symmetry-preserving truncation scheme contact interaction in the Schwinger-Dyson equations framework.","PeriodicalId":210091,"journal":{"name":"Suplemento de la Revista Mexicana de Física","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Suplemento de la Revista Mexicana de Física","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31349/suplrevmexfis.4.021124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We study the evolution of light quarks with isospin symmetry and the pion masses in the presence of a thermal bath and study their temperature dependence. In addition, we analyze the inclusion of a coupling with temperature dependence. We attempt to study the dissolution of bound-states at temperatures higher than the critical temperature, but we found that the model shows that the bound-state's mass increases. We base our study on a momentum-independent symmetry-preserving truncation scheme contact interaction in the Schwinger-Dyson equations framework.