On the wheeled PROP of stable cohomology of Aut(Fn) with bivariant coefficients

IF 0.6 3区 数学 Q3 MATHEMATICS
Nariya Kawazumi, Christine Vespa
{"title":"On the wheeled PROP of stable cohomology of Aut(Fn) with bivariant coefficients","authors":"Nariya Kawazumi, Christine Vespa","doi":"10.2140/agt.2023.23.3089","DOIUrl":null,"url":null,"abstract":"We show that the stable cohomology of automorphism groups of free groups with coefficients obtained by applying Hom(−, −) to tensor powers of the abelianization, is equipped with the structure of a wheeled PROP H. We define another wheeled PROP E by Ext-groups in the category of functors from the category of finitely generated free groups to k-modules. The main result of this paper is the construction of a morphism of wheeled PROPs ϕ : E → H such that ϕ(E) is the wheeled PROP generated by the cohomology class h 1 constructed by the first author.","PeriodicalId":50826,"journal":{"name":"Algebraic and Geometric Topology","volume":"28 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic and Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/agt.2023.23.3089","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We show that the stable cohomology of automorphism groups of free groups with coefficients obtained by applying Hom(−, −) to tensor powers of the abelianization, is equipped with the structure of a wheeled PROP H. We define another wheeled PROP E by Ext-groups in the category of functors from the category of finitely generated free groups to k-modules. The main result of this paper is the construction of a morphism of wheeled PROPs ϕ : E → H such that ϕ(E) is the wheeled PROP generated by the cohomology class h 1 constructed by the first author.
二元系数Aut(Fn)稳定上同调的轮式PROP
我们证明了自由群的自同构群的稳定上同调具有轮式PROP h的结构。我们用有限生成的自由群到k-模的函子范畴中的ext群定义了另一个轮式PROP E。本文的主要结果是构造了轮式PROP的一个态射φ: E→H,使得φ (E)是由第一作者构造的上同调类H 1生成的轮式PROP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
14.30%
发文量
62
审稿时长
6-12 weeks
期刊介绍: Algebraic and Geometric Topology is a fully refereed journal covering all of topology, broadly understood.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信