Perbandingan Teknik Prediksi Pemakaian Obat Menggunakan Algoritma Simple Linear Regression dan Support Vector Regression

Sephia Pratista, Alwis Nazir, Iwan Iskandar, Elvia Budianita, Iis Afrianty
{"title":"Perbandingan Teknik Prediksi Pemakaian Obat Menggunakan Algoritma Simple Linear Regression dan Support Vector Regression","authors":"Sephia Pratista, Alwis Nazir, Iwan Iskandar, Elvia Budianita, Iis Afrianty","doi":"10.47065/bits.v5i2.4260","DOIUrl":null,"url":null,"abstract":"Public Health Centers (Puskesmas) had a crucial role in furnishing society essential healthcare services and medication management. To preempt errors in stock management, a predictive approach is employed. This prediction methodology involves comparing Data Mining techniques utilizing the Simple Linear Regression algorithm and Machine Learning methodologies harnessing the Support Vector Regression algorithm. This research uses Paracetamol 500 mg and Cetirizine drug data from January 2020 to June 2023. The selection of these algorithms is motivated by the continuous nature of the data variables and their temporal span, spanning 42 months (period). The core aim of this study is to evaluate the magnitude of predictive errors using the Mean Absolute Percentage Error (MAPE) methodology. Implementing these methods was effectuated through the programming language Python with an 80%:20% partitioning of training and testing data. Drawing from experimental endeavors conducted concerning Paracetamol 500 mg, the utilization of the Simple Linear Regression algorithm, yields a MAPE score of 20.85%, categorized as 'Moderate,' whereas the application of the Support Vector Regression algorithm generates a MAPE of 18.39%, classified as 'Good.' Otherwise, experimentation on Cetirizine employing the Simple Linear Regression algorithm, employing an identical division of training and testing data, results in a MAPE of 18.39%, also classified as 'Good.' Meanwhile, resorting to the Support Vector Regression algorithm leads to a MAPE of 17.14%, falling under the 'Good' category. Based on the MAPE obtained, the Support Vector Regression algorithm has better prediction results than the Simple Linear Regression algorithm","PeriodicalId":474248,"journal":{"name":"Building of Informatics, Technology and Science (BITS)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building of Informatics, Technology and Science (BITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47065/bits.v5i2.4260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Public Health Centers (Puskesmas) had a crucial role in furnishing society essential healthcare services and medication management. To preempt errors in stock management, a predictive approach is employed. This prediction methodology involves comparing Data Mining techniques utilizing the Simple Linear Regression algorithm and Machine Learning methodologies harnessing the Support Vector Regression algorithm. This research uses Paracetamol 500 mg and Cetirizine drug data from January 2020 to June 2023. The selection of these algorithms is motivated by the continuous nature of the data variables and their temporal span, spanning 42 months (period). The core aim of this study is to evaluate the magnitude of predictive errors using the Mean Absolute Percentage Error (MAPE) methodology. Implementing these methods was effectuated through the programming language Python with an 80%:20% partitioning of training and testing data. Drawing from experimental endeavors conducted concerning Paracetamol 500 mg, the utilization of the Simple Linear Regression algorithm, yields a MAPE score of 20.85%, categorized as 'Moderate,' whereas the application of the Support Vector Regression algorithm generates a MAPE of 18.39%, classified as 'Good.' Otherwise, experimentation on Cetirizine employing the Simple Linear Regression algorithm, employing an identical division of training and testing data, results in a MAPE of 18.39%, also classified as 'Good.' Meanwhile, resorting to the Support Vector Regression algorithm leads to a MAPE of 17.14%, falling under the 'Good' category. Based on the MAPE obtained, the Support Vector Regression algorithm has better prediction results than the Simple Linear Regression algorithm
使用简单线性回归和支持向量回归算法的药物使用情况预测技术比较
公共卫生中心(Puskesmas)在向社会提供基本保健服务和药物管理方面发挥着至关重要的作用。为了预防库存管理中的错误,采用了一种预测方法。这种预测方法包括比较利用简单线性回归算法的数据挖掘技术和利用支持向量回归算法的机器学习方法。本研究使用2020年1月至2023年6月的扑热息痛500 mg和西替利嗪药物数据。这些算法的选择是由数据变量的连续性及其时间跨度(跨越42个月)所驱动的。本研究的核心目的是利用平均绝对百分比误差(MAPE)方法评估预测误差的大小。这些方法是通过编程语言Python实现的,训练和测试数据划分为80%:20%。根据对扑热息痛500毫克的实验结果,使用简单线性回归算法产生的MAPE得分为20.85%,归类为“中等”,而应用支持向量回归算法产生的MAPE得分为18.39%,归类为“良好”。另外,使用简单线性回归算法对Cetirizine进行实验,使用相同的训练和测试数据划分,结果MAPE为18.39%,也被归类为“良好”。与此同时,使用支持向量回归算法的MAPE为17.14%,属于“良好”类别。基于得到的MAPE,支持向量回归算法比简单线性回归算法具有更好的预测效果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信