Algebras of weakly symmetric functions on spaces of Lebesgue measurable functions

IF 1 Q1 MATHEMATICS
I.V. Burtnyak, Yu.Yu. Chopyuk, S.I. Vasylyshyn, T.V. Vasylyshyn
{"title":"Algebras of weakly symmetric functions on spaces of Lebesgue measurable functions","authors":"I.V. Burtnyak, Yu.Yu. Chopyuk, S.I. Vasylyshyn, T.V. Vasylyshyn","doi":"10.15330/cmp.15.2.411-419","DOIUrl":null,"url":null,"abstract":"In this work, we investigate algebras of block-symmetric and weakly symmetric polynomials and analytic functions on complex Banach spaces of Lebesgue measurable functions, for which the $p$th power of the absolute value is Lebesgue integrable, where $p\\in[1,+\\infty),$ and Lebesgue measurable essentially bounded functions on $[0,1].$ We construct generating systems of algebras of all weakly symmetric continuous complex-valued polynomials on these spaces. Also we establish conditions under which sets of weakly symmetric analytic functions are algebras.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.411-419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this work, we investigate algebras of block-symmetric and weakly symmetric polynomials and analytic functions on complex Banach spaces of Lebesgue measurable functions, for which the $p$th power of the absolute value is Lebesgue integrable, where $p\in[1,+\infty),$ and Lebesgue measurable essentially bounded functions on $[0,1].$ We construct generating systems of algebras of all weakly symmetric continuous complex-valued polynomials on these spaces. Also we establish conditions under which sets of weakly symmetric analytic functions are algebras.
勒贝格可测函数空间上弱对称函数的代数
本文研究了Lebesgue可测函数复Banach空间上块对称和弱对称多项式和解析函数的代数 $p$绝对值的幂是勒贝格可积的,其中 $p\in[1,+\infty),$ 勒贝格可测量的有界函数 $[0,1].$ 在这些空间上构造了所有弱对称连续复值多项式的代数生成系统。并建立了弱对称解析函数集是代数的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信