Ganesh Yallabandi, Veena Mayya, Jayakumar Jeganathan, Sowmya Kamath S.
{"title":"ICU Patients’ Pattern Recognition and Correlation Identification of Vital Parameters Using Optimized Machine Learning Models","authors":"Ganesh Yallabandi, Veena Mayya, Jayakumar Jeganathan, Sowmya Kamath S.","doi":"10.32985/ijeces.14.9.5","DOIUrl":null,"url":null,"abstract":"Early detection of patient deterioration in the Intensive Care Unit (ICU) can play a crucial role in improving patient outcomes. Conventional severity scales currently used to predict patient deterioration are based on a number of factors, the majority of which consist of multiple investigations. Recent advancements in machine learning (ML) within the healthcare domain offer the potential to alleviate the burden of continuous patient monitoring. In this study, we propose an optimized ML model designed to leverage variations in vital signs observed during the final 24 hours of an ICU stay for outcome predictions. Further, we elucidate the relative contributions of distinct vital parameters to these outcomes The dataset compiled in real-time encompasses six pivotal vital parameters: systolic (0) and diastolic (1) blood pressure, pulse rate (2), respiratory rate (3), oxygen saturation (SpO2) (4), and temperature (5). Of these vital parameters, systolic blood pressure emerges as the most significant predictor associated with mortality prediction. Using a fivefold cross-validation method, several ML classifiers are used to categorize the last 24 hours of time series data after ICU admission into three groups: recovery, death, and intubation. Notably, the optimized Gradient Boosting classifier exhibited the highest performance in detecting mortality, achieving an area under the receiver-operator curve (AUC) of 0.95. Through the integration of electronic health records with this ML software, there is the promise of early notifications regarding adverse outcomes, potentially several hours before the onset of hemodynamic instability.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":"46 15","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.9.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Early detection of patient deterioration in the Intensive Care Unit (ICU) can play a crucial role in improving patient outcomes. Conventional severity scales currently used to predict patient deterioration are based on a number of factors, the majority of which consist of multiple investigations. Recent advancements in machine learning (ML) within the healthcare domain offer the potential to alleviate the burden of continuous patient monitoring. In this study, we propose an optimized ML model designed to leverage variations in vital signs observed during the final 24 hours of an ICU stay for outcome predictions. Further, we elucidate the relative contributions of distinct vital parameters to these outcomes The dataset compiled in real-time encompasses six pivotal vital parameters: systolic (0) and diastolic (1) blood pressure, pulse rate (2), respiratory rate (3), oxygen saturation (SpO2) (4), and temperature (5). Of these vital parameters, systolic blood pressure emerges as the most significant predictor associated with mortality prediction. Using a fivefold cross-validation method, several ML classifiers are used to categorize the last 24 hours of time series data after ICU admission into three groups: recovery, death, and intubation. Notably, the optimized Gradient Boosting classifier exhibited the highest performance in detecting mortality, achieving an area under the receiver-operator curve (AUC) of 0.95. Through the integration of electronic health records with this ML software, there is the promise of early notifications regarding adverse outcomes, potentially several hours before the onset of hemodynamic instability.
期刊介绍:
The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.