An Algorithm for Crack Detection, Segmentation, and Fractal Dimension Estimation in Low-Light Environments by Fusing FFT and Convolutional Neural Network
IF 3.6 2区 数学Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
{"title":"An Algorithm for Crack Detection, Segmentation, and Fractal Dimension Estimation in Low-Light Environments by Fusing FFT and Convolutional Neural Network","authors":"Jiajie Cheng, Qiunan Chen, Xiaocheng Huang","doi":"10.3390/fractalfract7110820","DOIUrl":null,"url":null,"abstract":"The segmentation of crack detection and severity assessment in low-light environments presents a formidable challenge. To address this, we propose a novel dual encoder structure, denoted as DSD-Net, which integrates fast Fourier transform with a convolutional neural network. In this framework, we incorporate an information extraction module and an attention feature fusion module to effectively capture contextual global information and extract pertinent local features. Furthermore, we introduce a fractal dimension estimation method into the network, seamlessly integrated as an end-to-end task, augmenting the proficiency of professionals in detecting crack pathology within low-light settings. Subsequently, we curate a specialized dataset comprising instances of crack pathology in low-light conditions to facilitate the training and evaluation of the DSD-Net algorithm. Comparative experimentation attests to the commendable performance of DSD-Net in low-light environments, exhibiting superlative precision (88.5%), recall (85.3%), and F1 score (86.9%) in the detection task. Notably, DSD-Net exhibits a diminutive Model Size (35.3 MB) and elevated Frame Per Second (80.4 f/s), thereby endowing it with the potential to be seamlessly integrated into edge detection devices, thus amplifying its practical utility.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":"54 34","pages":"0"},"PeriodicalIF":3.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fractalfract7110820","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The segmentation of crack detection and severity assessment in low-light environments presents a formidable challenge. To address this, we propose a novel dual encoder structure, denoted as DSD-Net, which integrates fast Fourier transform with a convolutional neural network. In this framework, we incorporate an information extraction module and an attention feature fusion module to effectively capture contextual global information and extract pertinent local features. Furthermore, we introduce a fractal dimension estimation method into the network, seamlessly integrated as an end-to-end task, augmenting the proficiency of professionals in detecting crack pathology within low-light settings. Subsequently, we curate a specialized dataset comprising instances of crack pathology in low-light conditions to facilitate the training and evaluation of the DSD-Net algorithm. Comparative experimentation attests to the commendable performance of DSD-Net in low-light environments, exhibiting superlative precision (88.5%), recall (85.3%), and F1 score (86.9%) in the detection task. Notably, DSD-Net exhibits a diminutive Model Size (35.3 MB) and elevated Frame Per Second (80.4 f/s), thereby endowing it with the potential to be seamlessly integrated into edge detection devices, thus amplifying its practical utility.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.