Shota Miyoshi, Wataru Ohnishi, Takafumi Koseki, Motoki Sato
{"title":"Output Voltage Precise Tracking Control for Boost Converters Based on Noncausal and Nonlinear Feedforward Control","authors":"Shota Miyoshi, Wataru Ohnishi, Takafumi Koseki, Motoki Sato","doi":"10.1541/ieejjia.22009178","DOIUrl":null,"url":null,"abstract":"Boost converters are key components of DC power conversion used for electric mobility and renewable energy applications. In addition to constant voltage control of the output, variable voltage control has been attracting attention in recent years for high-efficiency drive of loads. However, the dynamic characteristics of boost converters exhibit non- linear and nonminimum phase characteristics. Therefore, the inverse model for feedforward control is unstable, making high-precision voltage trajectory tracking control challenging. This study aims to present a noncausal and nonlinear feedforward controller to compensate for the nonlinear and nonminimum phase characteristics of the boost converter and to achieve perfect tracking control with respect to the output voltage trajectory. This study also establishes a method for identifying circuit parameters and deriving the time length of noncausal control input for practical implementation. The effectiveness of this control method is demonstrated by experiments using a boost converter.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1541/ieejjia.22009178","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Boost converters are key components of DC power conversion used for electric mobility and renewable energy applications. In addition to constant voltage control of the output, variable voltage control has been attracting attention in recent years for high-efficiency drive of loads. However, the dynamic characteristics of boost converters exhibit non- linear and nonminimum phase characteristics. Therefore, the inverse model for feedforward control is unstable, making high-precision voltage trajectory tracking control challenging. This study aims to present a noncausal and nonlinear feedforward controller to compensate for the nonlinear and nonminimum phase characteristics of the boost converter and to achieve perfect tracking control with respect to the output voltage trajectory. This study also establishes a method for identifying circuit parameters and deriving the time length of noncausal control input for practical implementation. The effectiveness of this control method is demonstrated by experiments using a boost converter.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.