A universal robust limit theorem for nonlinear Lévy processes under sublinear expectation

IF 1 2区 数学 Q3 STATISTICS & PROBABILITY
Mingshang Hu, Lianzi Jiang, Gechun Liang, Shige Peng
{"title":"A universal robust limit theorem for nonlinear Lévy processes under sublinear expectation","authors":"Mingshang Hu, Lianzi Jiang, Gechun Liang, Shige Peng","doi":"10.3934/puqr.2023001","DOIUrl":null,"url":null,"abstract":"This article establishes a universal robust limit theorem under a sublinear expectation framework. Under moment and consistency conditions, we show that, for$ \\alpha \\in(1,2) $, the i.i.d. sequence $ \\left\\{ {\\left( {\\dfrac{1}{{\\sqrt n }} \\displaystyle\\sum\\limits_{i = 1}^n {{X_i}} ,\\dfrac{1}{n} \\displaystyle\\sum\\limits_{i = 1}^n {{Y_i}} ,\\dfrac{1}{{\\sqrt[\\alpha ]{n}}} \\displaystyle\\sum\\limits_{i = 1}^n {{Z_i}} } \\right)} \\right\\}_{n = 1}^\\infty  $converges in distribution to$ \\tilde{L}_{1} $, where$ \\tilde{L}_{t}=(\\tilde {\\xi}_{t},\\tilde{\\eta}_{t},\\tilde{\\zeta}_{t}) $,$ t\\in \\lbrack0,1] $, is a multidimensional nonlinear Lévy process with an uncertainty set$ \\Theta $as a set of Lévy triplets. This nonlinear Lévy process is characterized by a fully nonlinear and possibly degenerate partial integro-differential equation (PIDE) $\\begin{aligned}[b]\\left \\{ \\begin{array}  {l}   \\partial_{t}u(t,x,y,z)-\\sup \\limits_{(F_{\\mu},q,Q)\\in \\Theta }\\left \\{   \\displaystyle\\int_{\\mathbb{R}^{d}}\\delta_{\\lambda}u(t,x,y,z)F_{\\mu} ({\\rm{d}}\\lambda)\\right. \\\\   \\qquad\\left.  +\\langle D_{y}u(t,x,y,z),q\\rangle+\\dfrac{1}{2}tr[D_{x}^{2}u(t,x,y,z)Q]\\right \\}  =0,\\\\   u(0,x,y,z)=\\phi(x,y,z),\\quad  \\forall(t,x,y,z)\\in \\lbrack 0,1]\\times \\mathbb{R}^{3d}, \\end{array} \\right.\\end{aligned}$with$ \\delta_{\\lambda}u(t,x,y,z):=u(t,x,y,z+\\lambda)-u(t,x,y,z)-\\langle D_{z}u(t,x,y,z),\\lambda \\rangle $. To construct the limit process$ (\\tilde {L}_{t})_{t\\in \\lbrack0,1]} $, we develop a novel weak convergence approach based on the notions of tightness and weak compactness on a sublinear expectation space. We further prove a new type of Lévy-Khintchine representation formula to characterize$ (\\tilde{L}_{t})_{t\\in \\lbrack0,1]} $. As a byproduct, we also provide a probabilistic approach to prove the existence of the above fully nonlinear degenerate PIDE.","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":"23 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Uncertainty and Quantitative Risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/puqr.2023001","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

Abstract

This article establishes a universal robust limit theorem under a sublinear expectation framework. Under moment and consistency conditions, we show that, for$ \alpha \in(1,2) $, the i.i.d. sequence $ \left\{ {\left( {\dfrac{1}{{\sqrt n }} \displaystyle\sum\limits_{i = 1}^n {{X_i}} ,\dfrac{1}{n} \displaystyle\sum\limits_{i = 1}^n {{Y_i}} ,\dfrac{1}{{\sqrt[\alpha ]{n}}} \displaystyle\sum\limits_{i = 1}^n {{Z_i}} } \right)} \right\}_{n = 1}^\infty  $converges in distribution to$ \tilde{L}_{1} $, where$ \tilde{L}_{t}=(\tilde {\xi}_{t},\tilde{\eta}_{t},\tilde{\zeta}_{t}) $,$ t\in \lbrack0,1] $, is a multidimensional nonlinear Lévy process with an uncertainty set$ \Theta $as a set of Lévy triplets. This nonlinear Lévy process is characterized by a fully nonlinear and possibly degenerate partial integro-differential equation (PIDE) $\begin{aligned}[b]\left \{ \begin{array}  {l}   \partial_{t}u(t,x,y,z)-\sup \limits_{(F_{\mu},q,Q)\in \Theta }\left \{   \displaystyle\int_{\mathbb{R}^{d}}\delta_{\lambda}u(t,x,y,z)F_{\mu} ({\rm{d}}\lambda)\right. \\   \qquad\left.  +\langle D_{y}u(t,x,y,z),q\rangle+\dfrac{1}{2}tr[D_{x}^{2}u(t,x,y,z)Q]\right \}  =0,\\   u(0,x,y,z)=\phi(x,y,z),\quad  \forall(t,x,y,z)\in \lbrack 0,1]\times \mathbb{R}^{3d}, \end{array} \right.\end{aligned}$with$ \delta_{\lambda}u(t,x,y,z):=u(t,x,y,z+\lambda)-u(t,x,y,z)-\langle D_{z}u(t,x,y,z),\lambda \rangle $. To construct the limit process$ (\tilde {L}_{t})_{t\in \lbrack0,1]} $, we develop a novel weak convergence approach based on the notions of tightness and weak compactness on a sublinear expectation space. We further prove a new type of Lévy-Khintchine representation formula to characterize$ (\tilde{L}_{t})_{t\in \lbrack0,1]} $. As a byproduct, we also provide a probabilistic approach to prove the existence of the above fully nonlinear degenerate PIDE.
次线性期望下非线性lsamvy过程的一个通用鲁棒极限定理
本文建立了次线性期望框架下的一个通用鲁棒极限定理。在矩和一致性条件下,我们证明了,对于$ \alpha \in(1,2) $, i.i.d序列$ \left\{ {\left( {\dfrac{1}{{\sqrt n }} \displaystyle\sum\limits_{i = 1}^n {{X_i}} ,\dfrac{1}{n} \displaystyle\sum\limits_{i = 1}^n {{Y_i}} ,\dfrac{1}{{\sqrt[\alpha ]{n}}} \displaystyle\sum\limits_{i = 1}^n {{Z_i}} } \right)} \right\}_{n = 1}^\infty  $在分布上收敛于$ \tilde{L}_{1} $,其中$ \tilde{L}_{t}=(\tilde {\xi}_{t},\tilde{\eta}_{t},\tilde{\zeta}_{t}) $, $ t\in \lbrack0,1] $是一个多维非线性的lsamuvy过程,其中不确定性集$ \Theta $是一组lsamuvy三元组。这种非线性lsamvy过程的特征是一个带有$ \delta_{\lambda}u(t,x,y,z):=u(t,x,y,z+\lambda)-u(t,x,y,z)-\langle D_{z}u(t,x,y,z),\lambda \rangle $的完全非线性的可能退化的偏积分微分方程(PIDE) $\begin{aligned}[b]\left \{ \begin{array}  {l}   \partial_{t}u(t,x,y,z)-\sup \limits_{(F_{\mu},q,Q)\in \Theta }\left \{   \displaystyle\int_{\mathbb{R}^{d}}\delta_{\lambda}u(t,x,y,z)F_{\mu} ({\rm{d}}\lambda)\right. \\   \qquad\left.  +\langle D_{y}u(t,x,y,z),q\rangle+\dfrac{1}{2}tr[D_{x}^{2}u(t,x,y,z)Q]\right \}  =0,\\   u(0,x,y,z)=\phi(x,y,z),\quad  \forall(t,x,y,z)\in \lbrack 0,1]\times \mathbb{R}^{3d}, \end{array} \right.\end{aligned}$。为了构造极限过程$ (\tilde {L}_{t})_{t\in \lbrack0,1]} $,我们在次线性期望空间上基于紧性和弱紧性的概念提出了一种新的弱收敛方法。我们进一步证明了一种新的l - khintchine表示公式来表征$ (\tilde{L}_{t})_{t\in \lbrack0,1]} $。作为一个副产品,我们还提供了一个概率方法来证明上述完全非线性退化PIDE的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
13.30%
发文量
29
审稿时长
12 weeks
期刊介绍: Probability, Uncertainty and Quantitative Risk (PUQR) is a quarterly academic journal under the supervision of the Ministry of Education of the People's Republic of China and hosted by Shandong University, which is open to the public at home and abroad (ISSN 2095-9672; CN 37-1505/O1). Probability, Uncertainty and Quantitative Risk (PUQR) mainly reports on the major developments in modern probability theory, covering stochastic analysis and statistics, stochastic processes, dynamical analysis and control theory, and their applications in the fields of finance, economics, biology, and computer science. The journal is currently indexed in ESCI, Scopus, Mathematical Reviews, zbMATH Open and other databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信