{"title":"Linear electrostatic actuators with Moiré-effect optical proprioceptive sensing and electroadhesive braking","authors":"Inrak Choi, Sohee John Yoon, Yong-Lae Park","doi":"10.1177/02783649231210593","DOIUrl":null,"url":null,"abstract":"Muscles in animals and actuation systems in advanced robots consist not of the actuation component alone; the motive, dissipative, and proprioceptive components exist in a complete set to achieve versatile and precise manipulation tasks. We present such a system as a linear electrostatic actuator package incorporated with sensing and braking components. Our modular actuator design is composed of these actuator films and a dielectric fluid, and we examine the performance of the proposed system both theoretically and experimentally. In addition, we introduce a mechanism of optical proprioceptive sensing utilizing the Moiré pattern innately generated on the actuator surface, which allows high-resolution reading of the position of the actuator without noise. The optical sensor is also capable of measuring the force exerted by the actuator. Lastly, we add an electroadhesive brake in the package in parallel with the actuator, introducing a method of mode switching that utilizes all three components and presenting control demonstrations with a robot arm. Our actuation system is compact and flexible and can be easily integrated with various robotic applications.","PeriodicalId":54942,"journal":{"name":"International Journal of Robotics Research","volume":"46 5","pages":"0"},"PeriodicalIF":7.5000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/02783649231210593","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Muscles in animals and actuation systems in advanced robots consist not of the actuation component alone; the motive, dissipative, and proprioceptive components exist in a complete set to achieve versatile and precise manipulation tasks. We present such a system as a linear electrostatic actuator package incorporated with sensing and braking components. Our modular actuator design is composed of these actuator films and a dielectric fluid, and we examine the performance of the proposed system both theoretically and experimentally. In addition, we introduce a mechanism of optical proprioceptive sensing utilizing the Moiré pattern innately generated on the actuator surface, which allows high-resolution reading of the position of the actuator without noise. The optical sensor is also capable of measuring the force exerted by the actuator. Lastly, we add an electroadhesive brake in the package in parallel with the actuator, introducing a method of mode switching that utilizes all three components and presenting control demonstrations with a robot arm. Our actuation system is compact and flexible and can be easily integrated with various robotic applications.
期刊介绍:
The International Journal of Robotics Research (IJRR) has been a leading peer-reviewed publication in the field for over two decades. It holds the distinction of being the first scholarly journal dedicated to robotics research.
IJRR presents cutting-edge and thought-provoking original research papers, articles, and reviews that delve into groundbreaking trends, technical advancements, and theoretical developments in robotics. Renowned scholars and practitioners contribute to its content, offering their expertise and insights. This journal covers a wide range of topics, going beyond narrow technical advancements to encompass various aspects of robotics.
The primary aim of IJRR is to publish work that has lasting value for the scientific and technological advancement of the field. Only original, robust, and practical research that can serve as a foundation for further progress is considered for publication. The focus is on producing content that will remain valuable and relevant over time.
In summary, IJRR stands as a prestigious publication that drives innovation and knowledge in robotics research.