Almost no finite subset of integers containsa $q^{\text{th}}$ power modulo almost every prime

IF 0.5 Q3 MATHEMATICS
Bhawesh Mishra
{"title":"Almost no finite subset of integers containsa $q^{\\text{th}}$ power modulo almost every prime","authors":"Bhawesh Mishra","doi":"10.7169/facm/2122","DOIUrl":null,"url":null,"abstract":"Let $q$ be a prime. We give an elementary proof of the fact that for any $k\\in\\mathbb{N}$, the proportion of $k$-element subsets of $\\mathbb{Z}$ that contain a $q^{\\text{th}}$ power modulo almost every prime, is zero. This result holds regardless of whether the proportion is measured additively or multiplicatively. More specifically, the number of $k$-element subsets of $[-N, N]\\cap\\mathbb{Z}$ that contain a $q^{\\text{th}}$ power modulo almost every prime is no larger than $a_{q,k} N^{k-(1-\\frac{1}{q})}$, for some positive constant $a_{q,k}$. Furthermore, the number of $k$-element subsets of $\\{\\pm p_{1}^{e_{1}} p_{2}^{e_{2}} \\cdots p_N^{e_N} : 0 \\leq e_{1}, e_{2}, \\ldots, e_N\\leq N\\}$ that contain a $q^{\\text{th}}$ power modulo almost every prime is no larger than $m_{q,k} \\frac{N^{Nk}}{q^N}$ for some positive constant $m_{q,k}$.","PeriodicalId":44655,"journal":{"name":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7169/facm/2122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $q$ be a prime. We give an elementary proof of the fact that for any $k\in\mathbb{N}$, the proportion of $k$-element subsets of $\mathbb{Z}$ that contain a $q^{\text{th}}$ power modulo almost every prime, is zero. This result holds regardless of whether the proportion is measured additively or multiplicatively. More specifically, the number of $k$-element subsets of $[-N, N]\cap\mathbb{Z}$ that contain a $q^{\text{th}}$ power modulo almost every prime is no larger than $a_{q,k} N^{k-(1-\frac{1}{q})}$, for some positive constant $a_{q,k}$. Furthermore, the number of $k$-element subsets of $\{\pm p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_N^{e_N} : 0 \leq e_{1}, e_{2}, \ldots, e_N\leq N\}$ that contain a $q^{\text{th}}$ power modulo almost every prime is no larger than $m_{q,k} \frac{N^{Nk}}{q^N}$ for some positive constant $m_{q,k}$.
几乎没有有限的整数子集包含$q^{\text{th}}$幂模几乎所有素数
让 $q$ 做一个素数。我们给出了这个事实的初等证明 $k\in\mathbb{N}$的比例 $k$的元素子集 $\mathbb{Z}$ 它包含了 $q^{\text{th}}$ 几乎所有质数的幂模都是零。无论比例是用加法还是乘法来测量,这个结果都成立。更具体地说,是 $k$的元素子集 $[-N, N]\cap\mathbb{Z}$ 它包含了 $q^{\text{th}}$ 几乎所有素数的幂模都不大于 $a_{q,k} N^{k-(1-\frac{1}{q})}$对于某个正常数 $a_{q,k}$. 此外,的数量 $k$的元素子集 $\{\pm p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_N^{e_N} : 0 \leq e_{1}, e_{2}, \ldots, e_N\leq N\}$ 它包含了 $q^{\text{th}}$ 几乎所有素数的幂模都不大于 $m_{q,k} \frac{N^{Nk}}{q^N}$ 对于某个正常数 $m_{q,k}$.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
20.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信