Adaptive Stochastic Synchronization of Uncertain Delayed Neural Networks

Enli Wu, Yao Wang, Fei Luo
{"title":"Adaptive Stochastic Synchronization of Uncertain Delayed Neural Networks","authors":"Enli Wu, Yao Wang, Fei Luo","doi":"10.4236/jamp.2023.119164","DOIUrl":null,"url":null,"abstract":"This paper considers adaptive synchronization of uncertain neural networks with time delays and stochastic perturbation. A general adaptive controller is designed to deal with the difficulties deduced by uncertain parameters and stochastic perturbations, in which the controller is less conservative and optimal since its control gains can be automatically adjusted according to some designed update laws. Based on Lyapunov stability theory and Barbalat lemma, sufficient condition is obtained for synchronization of delayed neural networks by strict mathematical proof. Moreover, the obtained results of this paper are more general than most existing results of certainly neural networks with or without stochastic disturbances. Finally, numerical simulations are presented to substantiate our theoretical results.","PeriodicalId":15035,"journal":{"name":"Journal of Applied Mathematics and Physics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mathematics and Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jamp.2023.119164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper considers adaptive synchronization of uncertain neural networks with time delays and stochastic perturbation. A general adaptive controller is designed to deal with the difficulties deduced by uncertain parameters and stochastic perturbations, in which the controller is less conservative and optimal since its control gains can be automatically adjusted according to some designed update laws. Based on Lyapunov stability theory and Barbalat lemma, sufficient condition is obtained for synchronization of delayed neural networks by strict mathematical proof. Moreover, the obtained results of this paper are more general than most existing results of certainly neural networks with or without stochastic disturbances. Finally, numerical simulations are presented to substantiate our theoretical results.
不确定延迟神经网络的自适应随机同步
研究具有随机扰动和时滞的不确定神经网络的自适应同步问题。针对不确定参数和随机扰动带来的困难,设计了一种通用自适应控制器,该控制器可以根据设计的更新规律自动调整控制增益,具有较低的保守性和最优性。基于Lyapunov稳定性理论和Barbalat引理,通过严格的数学证明,得到了延迟神经网络同步的充分条件。此外,本文所得到的结果比大多数具有或不具有随机干扰的确定性神经网络的结果更具有普遍性。最后,通过数值模拟验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信