Unsupervised land-use change detection using multi-temporal POI embedding

IF 4.3 1区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Yao Yao, Qia Zhu, Zijin Guo, Weiming Huang, Yatao Zhang, Xiaoqin Yan, Anning Dong, Zhangwei Jiang, Hong Liu, Qingfeng Guan
{"title":"Unsupervised land-use change detection using multi-temporal POI embedding","authors":"Yao Yao, Qia Zhu, Zijin Guo, Weiming Huang, Yatao Zhang, Xiaoqin Yan, Anning Dong, Zhangwei Jiang, Hong Liu, Qingfeng Guan","doi":"10.1080/13658816.2023.2257262","DOIUrl":null,"url":null,"abstract":"AbstractRapid land-use change detection (LUCD) is pivotal for refined urban planning and management. In this paper, we investigate LUCD through learning embeddings of points of interest (POIs) from multiple temporalities. There are several prominent challenges: (1) the co-occurrence problem of multi-temporal POIs, (2) the heterogeneity of POI categorization, and (3) The lack of human-crafted labels. Therefore, multi-temporal POIs need to be aligned in the embedding space for effective LUCD. This study proposes a multi-temporal POI embedding (MT-POI2Vec) technique for LUCD in a fully unsupervised manner. In MT-POI2Vec, we first utilize random walks in POI networks to capture their single-period co-occurrence patterns; then, we leverage manifold learning to capture (1) single-period categorical semantics of POIs to enforce semantically similar POI embedding to be close and (2) cross-period categorical semantics to align multi-temporal POI embedding in a unified embedding space. We conducted experiments in Shenzhen, China, which demonstrates that the proposed method is effective. Compared with several baseline models, MT-POI2Vec can better align multi-temporal POIs and thus achieve higher performance in LUCD. In addition, our model can effectively identify areas with unchanged land use and land use changes in residential and industrial areas at a fine scale.Keywords: Land-use changeembedding space alignmentpoints of interestPOI embedding AcknowledgementsWe would like to acknowledge the comments and insights from the editors and three anonymous reviewers that helped lift the quality of the article.Disclosure statementNo potential conflict of interest was reported by the author(s).Data and codes availability statementWe share the codes and the sub-sampled data of the study at https://doi.org/10.6084/m9.figshare.24081699.Additional informationFundingThis work was supported by the National Key Research and Development Program of China [2019YFB2102903], the National Natural Science Foundation of China [41801306, 42101421 and 42171466]; the “CUG Scholar” Scientific Research Funds at China University of Geosciences (Wuhan) [2022034], a grant from Alibaba Innovative Research Project [20228670], a Guangdong-Hong Kong-Macau Joint Laboratory Program [2020B1212030009], and a grant from State Key Laboratory of Resources and Environmental Information System. W.H. acknowledges the financial support from the Knut and Alice Wallenberg Foundation.Notes on contributorsYao YaoYao Yao is a professor at China University of Geosciences (Wuhan), a researcher from the Center for Spatial Information Science at the University of Tokyo, and a visiting scholar at Alibaba Group. His research interests are geospatial big data mining, analysis, and computational urban science.Qia ZhuQia Zhu is a graduate student at China University of Geosciences (Wuhan). His research interests are spatial representation learning and urban land use change detection.Zijin GuoZijin Guo is a graduate student at China University of Geosciences (Wuhan). His research interests are trajectory data mining and complex network analysis.Weiming HuangWeiming Huang received his PhD in Geographical Information Science at Lund University, Sweden in 2020. He is a Wallenberg-NTU Postdoctoral Fellow at Nanyang Technological University, Singapore. His research interests mainly include spatial data mining and geospatial knowledge graphs.Yatao ZhangYatao Zhang is a doctoral student at the Mobility Information Engineering lab at ETH Zurich and the Future Resilient Systems at the Singapore-ETH centre. His research interests lie in context-based spatiotemporal analysis, geospatial big data mining, and traffic forecasting.Xiaoqin YanXiaoqin Yan is currently a Ph.D. student in GIScience at the Institute of Remote Sensing and Geographical Information Systems, Peking University, Beijing. His research interests are spatiotemporal big data computing and social perception.Anning DongAnning Dong is a graduate student at China University of Geosciences (Wuhan). His research interests are spatiotemporal big data mining and crime geography.Zhangwei JiangZhangwei Jiang is a staff algorithm engineer at Alibaba Group. His research interests are LBS data mining and research&recommendation algorithm.Hong LiuHong Liu is a senior staff algorithm engineer at Alibaba Group. His research interests are data mining and research&recommendation algorithm.Qingfeng GuanQingfeng Guan is a professor at China University of Geosciences (Wuhan). His research interests are high-performance spatial intelligence computation and urban computing.","PeriodicalId":14162,"journal":{"name":"International Journal of Geographical Information Science","volume":"31 1","pages":"0"},"PeriodicalIF":4.3000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geographical Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13658816.2023.2257262","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

AbstractRapid land-use change detection (LUCD) is pivotal for refined urban planning and management. In this paper, we investigate LUCD through learning embeddings of points of interest (POIs) from multiple temporalities. There are several prominent challenges: (1) the co-occurrence problem of multi-temporal POIs, (2) the heterogeneity of POI categorization, and (3) The lack of human-crafted labels. Therefore, multi-temporal POIs need to be aligned in the embedding space for effective LUCD. This study proposes a multi-temporal POI embedding (MT-POI2Vec) technique for LUCD in a fully unsupervised manner. In MT-POI2Vec, we first utilize random walks in POI networks to capture their single-period co-occurrence patterns; then, we leverage manifold learning to capture (1) single-period categorical semantics of POIs to enforce semantically similar POI embedding to be close and (2) cross-period categorical semantics to align multi-temporal POI embedding in a unified embedding space. We conducted experiments in Shenzhen, China, which demonstrates that the proposed method is effective. Compared with several baseline models, MT-POI2Vec can better align multi-temporal POIs and thus achieve higher performance in LUCD. In addition, our model can effectively identify areas with unchanged land use and land use changes in residential and industrial areas at a fine scale.Keywords: Land-use changeembedding space alignmentpoints of interestPOI embedding AcknowledgementsWe would like to acknowledge the comments and insights from the editors and three anonymous reviewers that helped lift the quality of the article.Disclosure statementNo potential conflict of interest was reported by the author(s).Data and codes availability statementWe share the codes and the sub-sampled data of the study at https://doi.org/10.6084/m9.figshare.24081699.Additional informationFundingThis work was supported by the National Key Research and Development Program of China [2019YFB2102903], the National Natural Science Foundation of China [41801306, 42101421 and 42171466]; the “CUG Scholar” Scientific Research Funds at China University of Geosciences (Wuhan) [2022034], a grant from Alibaba Innovative Research Project [20228670], a Guangdong-Hong Kong-Macau Joint Laboratory Program [2020B1212030009], and a grant from State Key Laboratory of Resources and Environmental Information System. W.H. acknowledges the financial support from the Knut and Alice Wallenberg Foundation.Notes on contributorsYao YaoYao Yao is a professor at China University of Geosciences (Wuhan), a researcher from the Center for Spatial Information Science at the University of Tokyo, and a visiting scholar at Alibaba Group. His research interests are geospatial big data mining, analysis, and computational urban science.Qia ZhuQia Zhu is a graduate student at China University of Geosciences (Wuhan). His research interests are spatial representation learning and urban land use change detection.Zijin GuoZijin Guo is a graduate student at China University of Geosciences (Wuhan). His research interests are trajectory data mining and complex network analysis.Weiming HuangWeiming Huang received his PhD in Geographical Information Science at Lund University, Sweden in 2020. He is a Wallenberg-NTU Postdoctoral Fellow at Nanyang Technological University, Singapore. His research interests mainly include spatial data mining and geospatial knowledge graphs.Yatao ZhangYatao Zhang is a doctoral student at the Mobility Information Engineering lab at ETH Zurich and the Future Resilient Systems at the Singapore-ETH centre. His research interests lie in context-based spatiotemporal analysis, geospatial big data mining, and traffic forecasting.Xiaoqin YanXiaoqin Yan is currently a Ph.D. student in GIScience at the Institute of Remote Sensing and Geographical Information Systems, Peking University, Beijing. His research interests are spatiotemporal big data computing and social perception.Anning DongAnning Dong is a graduate student at China University of Geosciences (Wuhan). His research interests are spatiotemporal big data mining and crime geography.Zhangwei JiangZhangwei Jiang is a staff algorithm engineer at Alibaba Group. His research interests are LBS data mining and research&recommendation algorithm.Hong LiuHong Liu is a senior staff algorithm engineer at Alibaba Group. His research interests are data mining and research&recommendation algorithm.Qingfeng GuanQingfeng Guan is a professor at China University of Geosciences (Wuhan). His research interests are high-performance spatial intelligence computation and urban computing.
基于多时相POI嵌入的无监督土地利用变化检测
摘要快速土地利用变化检测(LUCD)是城市精细化规划和管理的关键。在本文中,我们通过学习多个时间点的兴趣点(poi)嵌入来研究LUCD。存在几个突出的挑战:(1)多时间点POI的共现问题;(2)POI分类的异质性;(3)缺乏人工制作的标签。因此,为了实现有效的LUCD,需要在嵌入空间中对齐多时间点。本研究提出了一种完全无监督的LUCD多时相POI嵌入(MT-POI2Vec)技术。在MT-POI2Vec中,我们首先利用POI网络中的随机漫步来捕获它们的单周期共现模式;然后,我们利用流形学习来捕获(1)POI的单周期范畴语义,使语义相似的POI嵌入更加接近;(2)跨周期范畴语义,使多时间POI嵌入在统一的嵌入空间中对齐。我们在中国深圳进行了实验,结果表明该方法是有效的。与几种基线模型相比,MT-POI2Vec可以更好地对齐多时间点poi,从而在LUCD中获得更高的性能。此外,我们的模型可以在精细尺度上有效识别土地利用不变区域以及住宅和工业区域的土地利用变化。关键词:土地利用变化嵌入空间对齐感兴趣点poi嵌入感谢我们的编辑和三位匿名审稿人的评论和见解,他们帮助提高了文章的质量。披露声明作者未报告潜在的利益冲突。本文由国家重点研发计划项目[2019YFB2102903]、国家自然科学基金项目[41801306,42101421和42171466]资助;中国地质大学(武汉)“中国地质大学学者”科研基金[2022034],阿里巴巴创新科研计划[20228670],粤港澳联合实验室计划[2020B1212030009],资源与环境信息系统国家重点实验室资助。世卫组织感谢克努特和爱丽丝·瓦伦堡基金会的财政支持。姚瑶瑶,中国地质大学(武汉)教授,东京大学空间信息科学中心研究员,阿里巴巴集团访问学者。主要研究方向为地理空间大数据挖掘、分析和计算城市科学。朱佳,中国地质大学(武汉)研究生。主要研究方向为空间表征学习和城市土地利用变化检测。郭子金,中国地质大学(武汉)研究生。主要研究方向为轨迹数据挖掘和复杂网络分析。黄伟明,2020年获瑞典隆德大学地理信息科学博士学位。他是新加坡南洋理工大学瓦伦堡-南洋理工大学博士后。主要研究方向为空间数据挖掘和地理空间知识图谱。张亚涛是苏黎世联邦理工学院移动信息工程实验室和新加坡-ETH中心未来弹性系统的博士生。主要研究方向为基于情景的时空分析、地理空间大数据挖掘、交通预测。闫晓琴,现任北京大学遥感与地理信息系统研究所gisscience专业博士生。主要研究方向为时空大数据计算和社会感知。董安宁,中国地质大学(武汉)研究生。主要研究方向为时空大数据挖掘和犯罪地理学。蒋张伟是阿里巴巴集团的一名算法工程师。主要研究方向为LBS数据挖掘、研究与推荐算法。刘红是阿里巴巴集团的高级算法工程师。主要研究方向为数据挖掘、研究与推荐算法。关庆峰,中国地质大学(武汉)教授。主要研究方向为高性能空间智能计算和城市计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.00
自引率
7.00%
发文量
81
审稿时长
9 months
期刊介绍: International Journal of Geographical Information Science provides a forum for the exchange of original ideas, approaches, methods and experiences in the rapidly growing field of geographical information science (GIScience). It is intended to interest those who research fundamental and computational issues of geographic information, as well as issues related to the design, implementation and use of geographical information for monitoring, prediction and decision making. Published research covers innovations in GIScience and novel applications of GIScience in natural resources, social systems and the built environment, as well as relevant developments in computer science, cartography, surveying, geography and engineering in both developed and developing countries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信