Zahra Raeisi, Bahman Farajmand, Parvaneh Nakhostin Panahi, Mohammad Reza Yaftian
{"title":"Gold recovery from electronic wastes using a solvent extraction/selective back-extraction strategy","authors":"Zahra Raeisi, Bahman Farajmand, Parvaneh Nakhostin Panahi, Mohammad Reza Yaftian","doi":"10.1080/01496395.2023.2260945","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe present lab-scale investigation describes a simple and efficient approach to the selective solvent extraction and recovery of gold, and copper as a by-product, from Waste Printed Circuit Boards (WPCBs) of different brands of used computers. The process comprised of three steps; leaching of scraps in aqua regia, solvent extraction process under optimized conditions, and ultimately selective back-extraction. The analysis of leach solution by inductively coupled plasma revealed, in addition to gold (0.14 wt%), copper (40.0 wt%), tin (11.9 wt%), and Ni (2.3 wt%) were the other main metals in the WPCBs. A solvent extraction procedure using trioctylamine, as extractant, dissolved in kerosene was employed for the extraction of gold as its anionic chloride-complexes from the leach liquor. The parameters affecting this process including hydrochloric acid concentration, equilibrium time, extractant concentration, initial gold concentration in the sample solution, and the aqueous/organic volume ratio were optimized by means of the statistical technique response surface methodology (RSM). Under the optimized extraction conditions, 99.6% of gold and 23.4% of copper were transferred into the organic phase, while the extracted percentage of other metal ions were negligible. Selective back-extraction by the solution 0.1 M NaOH resulted in the selective precipitation of copper, while the raffinate contained just gold ions.KEYWORDS: Goldcopperrecyclingsolvent extractionselective back-extractiontrioctylamineresponse surface methodology optimization Disclosure statementThe authors declare no conflict of interest.Statement of NoveltyThe present paper aims to report a new, low-cost, efficient, and simple solvent extraction method, using a solution of trioctylamine dissolved in kerosene, followed by a selective back-extraction procedure method, for efficient recovery of gold from leach liquor of Waste Printed Circuit Boards (WPCBs). The presented method allowed also to obtain metallic copper as the by-product","PeriodicalId":21680,"journal":{"name":"Separation Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01496395.2023.2260945","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTThe present lab-scale investigation describes a simple and efficient approach to the selective solvent extraction and recovery of gold, and copper as a by-product, from Waste Printed Circuit Boards (WPCBs) of different brands of used computers. The process comprised of three steps; leaching of scraps in aqua regia, solvent extraction process under optimized conditions, and ultimately selective back-extraction. The analysis of leach solution by inductively coupled plasma revealed, in addition to gold (0.14 wt%), copper (40.0 wt%), tin (11.9 wt%), and Ni (2.3 wt%) were the other main metals in the WPCBs. A solvent extraction procedure using trioctylamine, as extractant, dissolved in kerosene was employed for the extraction of gold as its anionic chloride-complexes from the leach liquor. The parameters affecting this process including hydrochloric acid concentration, equilibrium time, extractant concentration, initial gold concentration in the sample solution, and the aqueous/organic volume ratio were optimized by means of the statistical technique response surface methodology (RSM). Under the optimized extraction conditions, 99.6% of gold and 23.4% of copper were transferred into the organic phase, while the extracted percentage of other metal ions were negligible. Selective back-extraction by the solution 0.1 M NaOH resulted in the selective precipitation of copper, while the raffinate contained just gold ions.KEYWORDS: Goldcopperrecyclingsolvent extractionselective back-extractiontrioctylamineresponse surface methodology optimization Disclosure statementThe authors declare no conflict of interest.Statement of NoveltyThe present paper aims to report a new, low-cost, efficient, and simple solvent extraction method, using a solution of trioctylamine dissolved in kerosene, followed by a selective back-extraction procedure method, for efficient recovery of gold from leach liquor of Waste Printed Circuit Boards (WPCBs). The presented method allowed also to obtain metallic copper as the by-product
期刊介绍:
This international journal deals with fundamental and applied aspects of separation processes related to a number of fields. A wide range of topics are covered in the journal including adsorption, membranes, extraction, distillation, absorption, centrifugation, crystallization, precipitation, reactive separations, hybrid processes, continuous separations, carbon capture, flocculation and magnetic separations. The journal focuses on state of the art preparative separations and theoretical contributions to the field of separation science. Applications include environmental, energy, water, and biotechnology. The journal does not publish analytical separation papers unless they contain new fundamental contributions to the field of separation science.