{"title":"A Deep Learning Framework With Visualisation for Uncovering Students’ Learning Progression and Learning Bottlenecks","authors":"Chun Yan Enoch Sit, Siu-Cheung Kong","doi":"10.1177/07356331231200600","DOIUrl":null,"url":null,"abstract":"Educational process mining aims (EPM) to help teachers understand the overall learning process of their students. Although deep learning models have shown promising results in many domains, the event log dataset in many online courses may not be large enough for deep learning models to approximate the probability distribution of students’ learning sequence due to a lack of participants. This study proposes a deep learning framework to help uncover the learning progression of learners. It aims to produce a graphical representation of the overall educational process from event logs. Our framework adopts the Smith–Waterman algorithm from the bioinformatics field to evaluate general learning sequences generated from deep learning models. Using our framework, we compare the performance of a deep learning model with the modified cross-attention layer and a model without modification and find that the modified model outperforms the other. The contribution of this framework is that it enables the use of neural architecture search techniques to uncover students’ general learning sequence irrespective of the dataset’s size. The framework also helps educators identify education materials that present as learning bottlenecks, enabling them to improve the materials and their respective layout order, thus facilitating student learning.","PeriodicalId":47865,"journal":{"name":"Journal of Educational Computing Research","volume":"7 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational Computing Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/07356331231200600","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 1
Abstract
Educational process mining aims (EPM) to help teachers understand the overall learning process of their students. Although deep learning models have shown promising results in many domains, the event log dataset in many online courses may not be large enough for deep learning models to approximate the probability distribution of students’ learning sequence due to a lack of participants. This study proposes a deep learning framework to help uncover the learning progression of learners. It aims to produce a graphical representation of the overall educational process from event logs. Our framework adopts the Smith–Waterman algorithm from the bioinformatics field to evaluate general learning sequences generated from deep learning models. Using our framework, we compare the performance of a deep learning model with the modified cross-attention layer and a model without modification and find that the modified model outperforms the other. The contribution of this framework is that it enables the use of neural architecture search techniques to uncover students’ general learning sequence irrespective of the dataset’s size. The framework also helps educators identify education materials that present as learning bottlenecks, enabling them to improve the materials and their respective layout order, thus facilitating student learning.
期刊介绍:
The goal of this Journal is to provide an international scholarly publication forum for peer-reviewed interdisciplinary research into the applications, effects, and implications of computer-based education. The Journal features articles useful for practitioners and theorists alike. The terms "education" and "computing" are viewed broadly. “Education” refers to the use of computer-based technologies at all levels of the formal education system, business and industry, home-schooling, lifelong learning, and unintentional learning environments. “Computing” refers to all forms of computer applications and innovations - both hardware and software. For example, this could range from mobile and ubiquitous computing to immersive 3D simulations and games to computing-enhanced virtual learning environments.