Deep Learning Inpainting Model on Digital and Medical Images-A Review

Jennyfer Susan, Parthasarathy Subashini
{"title":"Deep Learning Inpainting Model on Digital and Medical Images-A Review","authors":"Jennyfer Susan, Parthasarathy Subashini","doi":"10.34028/iajit/20/6/9","DOIUrl":null,"url":null,"abstract":"Image inpainting is a method to restore the missing pixels on damaged images. Initially, the traditional inpainting method uses the statistics of the surrounding pixels to find the missing pixels. It sometimes fails to read the hidden information to attain plausible imagery. The deep learning inpainting methods are introduced to overcome these challenges. A deep neural network learns the semantic priors and hidden representation pixels in an end-to-end fashion in the digital and medical. This paper discusses the following: 1) The difference between the supervised and the unsupervised deep learning inpainting algorithm used in medical and digital images. 2) Discusses the merits and demerits of each deep learning inpainting model. 3) Discusses the challenges and solution for the deep learning inpainting model. 4) Discusses each model's quantitative and qualitative analysis in the digital and other medical images","PeriodicalId":161392,"journal":{"name":"The International Arab Journal of Information Technology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Arab Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/20/6/9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image inpainting is a method to restore the missing pixels on damaged images. Initially, the traditional inpainting method uses the statistics of the surrounding pixels to find the missing pixels. It sometimes fails to read the hidden information to attain plausible imagery. The deep learning inpainting methods are introduced to overcome these challenges. A deep neural network learns the semantic priors and hidden representation pixels in an end-to-end fashion in the digital and medical. This paper discusses the following: 1) The difference between the supervised and the unsupervised deep learning inpainting algorithm used in medical and digital images. 2) Discusses the merits and demerits of each deep learning inpainting model. 3) Discusses the challenges and solution for the deep learning inpainting model. 4) Discusses each model's quantitative and qualitative analysis in the digital and other medical images
数字医学图像的深度学习绘画模型综述
图像修复是在受损图像上恢复缺失像素的一种方法。传统的补图方法最初是利用周围像素的统计信息来寻找缺失的像素。它有时无法读取隐藏的信息以获得可信的图像。为了克服这些挑战,引入了绘画中的深度学习方法。在数字和医疗领域,深度神经网络以端到端的方式学习语义先验和隐藏表示像素。本文讨论了以下内容:1)医学图像和数字图像中有监督深度学习与无监督深度学习的区别。2)讨论了各种深度学习绘画模型的优缺点。3)讨论了深度学习在绘画模型中的挑战和解决方案。4)讨论了各个模型在数字图像和其他医学图像中的定量和定性分析
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信