{"title":"Well-posedness for systems of self-propelled particles","authors":"Marc Briant, Nicolas Meunier","doi":"10.3934/krm.2023036","DOIUrl":null,"url":null,"abstract":"This paper deals with the existence and uniqueness of solutions to kinetic equations describing alignment of self-propelled particles. The particularity of these models is that the velocity variable is not on the Euclidean space but constrained on the unit sphere (the self-propulsion constraint). Two related equations are considered: the first one, in which the alignment mechanism is nonlocal, using an observation kernel depending on the space variable, and a second form, which is purely local, corresponding to the principal order of a scaling limit of the first one. We prove local existence and uniqueness of weak solutions in both cases for bounded initial conditions (in space and velocity) with finite total mass. The solution is proven to depend continuously on the initial data in $ L^p $ spaces with finite $ p $. In the case of a bounded kernel of observation, we obtain that the solution is global in time. Finally, by exploiting the fact that the second equation corresponds to the principal order of a scaling limit of the first one, we deduce a Cauchy theory for an approximate problem approaching the second one.","PeriodicalId":49942,"journal":{"name":"Kinetic and Related Models","volume":"30 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic and Related Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/krm.2023036","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
This paper deals with the existence and uniqueness of solutions to kinetic equations describing alignment of self-propelled particles. The particularity of these models is that the velocity variable is not on the Euclidean space but constrained on the unit sphere (the self-propulsion constraint). Two related equations are considered: the first one, in which the alignment mechanism is nonlocal, using an observation kernel depending on the space variable, and a second form, which is purely local, corresponding to the principal order of a scaling limit of the first one. We prove local existence and uniqueness of weak solutions in both cases for bounded initial conditions (in space and velocity) with finite total mass. The solution is proven to depend continuously on the initial data in $ L^p $ spaces with finite $ p $. In the case of a bounded kernel of observation, we obtain that the solution is global in time. Finally, by exploiting the fact that the second equation corresponds to the principal order of a scaling limit of the first one, we deduce a Cauchy theory for an approximate problem approaching the second one.
期刊介绍:
KRM publishes high quality papers of original research in the areas of kinetic equations spanning from mathematical theory to numerical analysis, simulations and modelling. It includes studies on models arising from physics, engineering, finance, biology, human and social sciences, together with their related fields such as fluid models, interacting particle systems and quantum systems. A more detailed indication of its scope is given by the subject interests of the members of the Board of Editors. Invited expository articles are also published from time to time.