{"title":"Face morphing attacks and face image quality: The effect of morphing and the unsupervised attack detection by quality","authors":"Biying Fu, Naser Damer","doi":"10.1049/bme2.12094","DOIUrl":null,"url":null,"abstract":"<p>Morphing attacks are a form of presentation attacks that gathered increasing attention in recent years. A morphed image can be successfully verified to multiple identities. This operation, therefore, poses serious security issues related to the ability of a travel or identity document to be verified to belong to multiple persons. Previous studies touched on the issue of the quality of morphing attack images, however, with the main goal of quantitatively proofing the realistic appearance of the produced morphing attacks. The authors theorise that the morphing processes might have an effect on both, the perceptual image quality and the image utility in face recognition (FR) when compared to bona fide samples. Towards investigating this theory, this work provides an extensive analysis of the effect of morphing on face image quality, including both general image quality measures and face image utility measures. This analysis is not limited to a single morphing technique but rather looks at six different morphing techniques and five different data sources using ten different quality measures. This analysis reveals consistent separability between the quality scores of morphing attack and bona fide samples measured by certain quality measures. The authors’ study goes further to build on this effect and investigate the possibility of performing unsupervised morphing attack detection (MAD) based on quality scores. The authors’ study looks into intra- and inter-dataset detectability to evaluate the generalisability of such a detection concept on different morphing techniques and bona fide sources. The authors’ final results point out that a set of quality measures, such as MagFace and CNNIQA, can be used to perform unsupervised and generalised MAD with a correct classification accuracy of over 70%.</p>","PeriodicalId":48821,"journal":{"name":"IET Biometrics","volume":"11 5","pages":"359-382"},"PeriodicalIF":1.8000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/bme2.12094","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Biometrics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/bme2.12094","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Morphing attacks are a form of presentation attacks that gathered increasing attention in recent years. A morphed image can be successfully verified to multiple identities. This operation, therefore, poses serious security issues related to the ability of a travel or identity document to be verified to belong to multiple persons. Previous studies touched on the issue of the quality of morphing attack images, however, with the main goal of quantitatively proofing the realistic appearance of the produced morphing attacks. The authors theorise that the morphing processes might have an effect on both, the perceptual image quality and the image utility in face recognition (FR) when compared to bona fide samples. Towards investigating this theory, this work provides an extensive analysis of the effect of morphing on face image quality, including both general image quality measures and face image utility measures. This analysis is not limited to a single morphing technique but rather looks at six different morphing techniques and five different data sources using ten different quality measures. This analysis reveals consistent separability between the quality scores of morphing attack and bona fide samples measured by certain quality measures. The authors’ study goes further to build on this effect and investigate the possibility of performing unsupervised morphing attack detection (MAD) based on quality scores. The authors’ study looks into intra- and inter-dataset detectability to evaluate the generalisability of such a detection concept on different morphing techniques and bona fide sources. The authors’ final results point out that a set of quality measures, such as MagFace and CNNIQA, can be used to perform unsupervised and generalised MAD with a correct classification accuracy of over 70%.
IET BiometricsCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
0.00%
发文量
46
审稿时长
33 weeks
期刊介绍:
The field of biometric recognition - automated recognition of individuals based on their behavioural and biological characteristics - has now reached a level of maturity where viable practical applications are both possible and increasingly available. The biometrics field is characterised especially by its interdisciplinarity since, while focused primarily around a strong technological base, effective system design and implementation often requires a broad range of skills encompassing, for example, human factors, data security and database technologies, psychological and physiological awareness, and so on. Also, the technology focus itself embraces diversity, since the engineering of effective biometric systems requires integration of image analysis, pattern recognition, sensor technology, database engineering, security design and many other strands of understanding.
The scope of the journal is intentionally relatively wide. While focusing on core technological issues, it is recognised that these may be inherently diverse and in many cases may cross traditional disciplinary boundaries. The scope of the journal will therefore include any topics where it can be shown that a paper can increase our understanding of biometric systems, signal future developments and applications for biometrics, or promote greater practical uptake for relevant technologies:
Development and enhancement of individual biometric modalities including the established and traditional modalities (e.g. face, fingerprint, iris, signature and handwriting recognition) and also newer or emerging modalities (gait, ear-shape, neurological patterns, etc.)
Multibiometrics, theoretical and practical issues, implementation of practical systems, multiclassifier and multimodal approaches
Soft biometrics and information fusion for identification, verification and trait prediction
Human factors and the human-computer interface issues for biometric systems, exception handling strategies
Template construction and template management, ageing factors and their impact on biometric systems
Usability and user-oriented design, psychological and physiological principles and system integration
Sensors and sensor technologies for biometric processing
Database technologies to support biometric systems
Implementation of biometric systems, security engineering implications, smartcard and associated technologies in implementation, implementation platforms, system design and performance evaluation
Trust and privacy issues, security of biometric systems and supporting technological solutions, biometric template protection
Biometric cryptosystems, security and biometrics-linked encryption
Links with forensic processing and cross-disciplinary commonalities
Core underpinning technologies (e.g. image analysis, pattern recognition, computer vision, signal processing, etc.), where the specific relevance to biometric processing can be demonstrated
Applications and application-led considerations
Position papers on technology or on the industrial context of biometric system development
Adoption and promotion of standards in biometrics, improving technology acceptance, deployment and interoperability, avoiding cross-cultural and cross-sector restrictions
Relevant ethical and social issues