{"title":"A Remark on the Uniqueness of Solutions to Hyperbolic Conservation Laws","authors":"Alberto Bressan, Camillo De Lellis","doi":"10.1007/s00205-023-01936-y","DOIUrl":null,"url":null,"abstract":"<div><p>Given a strictly hyperbolic <span>\\(n\\times n\\)</span> system of conservation laws, it is well known that there exists a unique Lipschitz semigroup of weak solutions, defined on a domain of functions with small total variation, which are limits of vanishing viscosity approximations. The aim of this note is to prove that every weak solution taking values in the domain of the semigroup, and whose shocks satisfy the Liu admissibility conditions, actually coincides with a semigroup trajectory.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-023-01936-y.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-023-01936-y","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Given a strictly hyperbolic \(n\times n\) system of conservation laws, it is well known that there exists a unique Lipschitz semigroup of weak solutions, defined on a domain of functions with small total variation, which are limits of vanishing viscosity approximations. The aim of this note is to prove that every weak solution taking values in the domain of the semigroup, and whose shocks satisfy the Liu admissibility conditions, actually coincides with a semigroup trajectory.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.