Summation formulas of hyperharmonic numbers with their generalizations

IF 0.9 Q2 MATHEMATICS
Takao Komatsu, Rusen Li
{"title":"Summation formulas of hyperharmonic numbers with their generalizations","authors":"Takao Komatsu,&nbsp;Rusen Li","doi":"10.1007/s13370-023-01131-y","DOIUrl":null,"url":null,"abstract":"<div><p>In 1990, Spieß  gave some identities of harmonic numbers including the types <span>\\(\\sum _{\\ell =1}^n\\ell ^k H_\\ell \\)</span>, <span>\\(\\sum _{\\ell =1}^n\\ell ^k H_{n-\\ell }\\)</span> and <span>\\(\\sum _{\\ell =1}^n\\ell ^k H_\\ell H_{n-\\ell }\\)</span>. In this paper, we derive several formulas of hyperharmonic numbers including <span>\\(\\sum _{\\ell =0}^{n} {\\ell }^{p} h_{\\ell }^{(r)} h_{n-\\ell }^{(s)}\\)</span> and <span>\\(\\sum _{\\ell =0}^n \\ell ^{p}\\left( h_{\\ell }^{(r)}\\right) ^{2}\\)</span>. Some more formulas of generalized hyperharmonic numbers are also shown.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"34 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-023-01131-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In 1990, Spieß  gave some identities of harmonic numbers including the types \(\sum _{\ell =1}^n\ell ^k H_\ell \), \(\sum _{\ell =1}^n\ell ^k H_{n-\ell }\) and \(\sum _{\ell =1}^n\ell ^k H_\ell H_{n-\ell }\). In this paper, we derive several formulas of hyperharmonic numbers including \(\sum _{\ell =0}^{n} {\ell }^{p} h_{\ell }^{(r)} h_{n-\ell }^{(s)}\) and \(\sum _{\ell =0}^n \ell ^{p}\left( h_{\ell }^{(r)}\right) ^{2}\). Some more formulas of generalized hyperharmonic numbers are also shown.

超调和数的求和公式及其推广
1990年,Spieß给出了几种调和数的恒等式,包括\(\sum _{\ell =1}^n\ell ^k H_\ell \)、\(\sum _{\ell =1}^n\ell ^k H_{n-\ell }\)和\(\sum _{\ell =1}^n\ell ^k H_\ell H_{n-\ell }\)类型。本文导出了超调和数\(\sum _{\ell =0}^{n} {\ell }^{p} h_{\ell }^{(r)} h_{n-\ell }^{(s)}\)和\(\sum _{\ell =0}^n \ell ^{p}\left( h_{\ell }^{(r)}\right) ^{2}\)的几个公式。给出了广义超调和数的其他一些公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信