{"title":"The metric structure of compact rank-one ECS manifolds","authors":"Andrzej Derdzinski, Ivo Terek","doi":"10.1007/s10455-023-09929-6","DOIUrl":null,"url":null,"abstract":"<div><p>Pseudo-Riemannian manifolds with nonzero parallel Weyl tensor which are not locally symmetric are known as ECS manifolds. Every ECS manifold carries a distinguished null parallel distribution <span>\\(\\mathcal {D}\\)</span>, the rank <span>\\(d\\in \\{1,2\\}\\)</span> of which is referred to as the rank of the manifold itself. Under a natural genericity assumption on the Weyl tensor, we fully describe the universal coverings of compact rank-one ECS manifolds. We then show that any generic compact rank-one ECS manifold must be <i>translational</i>, in the sense that the holonomy group of the natural flat connection induced on <span>\\(\\mathcal {D}\\)</span> is either trivial or isomorphic to <span>\\({\\mathbb {Z}}_2\\)</span>. We also prove that all four-dimensional rank-one ECS manifolds are noncompact, this time without having to assume genericity, as it is always the case in dimension four.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09929-6.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09929-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Pseudo-Riemannian manifolds with nonzero parallel Weyl tensor which are not locally symmetric are known as ECS manifolds. Every ECS manifold carries a distinguished null parallel distribution \(\mathcal {D}\), the rank \(d\in \{1,2\}\) of which is referred to as the rank of the manifold itself. Under a natural genericity assumption on the Weyl tensor, we fully describe the universal coverings of compact rank-one ECS manifolds. We then show that any generic compact rank-one ECS manifold must be translational, in the sense that the holonomy group of the natural flat connection induced on \(\mathcal {D}\) is either trivial or isomorphic to \({\mathbb {Z}}_2\). We also prove that all four-dimensional rank-one ECS manifolds are noncompact, this time without having to assume genericity, as it is always the case in dimension four.
期刊介绍:
This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field.
The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.