The metric structure of compact rank-one ECS manifolds

IF 0.6 3区 数学 Q3 MATHEMATICS
Andrzej Derdzinski, Ivo Terek
{"title":"The metric structure of compact rank-one ECS manifolds","authors":"Andrzej Derdzinski,&nbsp;Ivo Terek","doi":"10.1007/s10455-023-09929-6","DOIUrl":null,"url":null,"abstract":"<div><p>Pseudo-Riemannian manifolds with nonzero parallel Weyl tensor which are not locally symmetric are known as ECS manifolds. Every ECS manifold carries a distinguished null parallel distribution <span>\\(\\mathcal {D}\\)</span>, the rank <span>\\(d\\in \\{1,2\\}\\)</span> of which is referred to as the rank of the manifold itself. Under a natural genericity assumption on the Weyl tensor, we fully describe the universal coverings of compact rank-one ECS manifolds. We then show that any generic compact rank-one ECS manifold must be <i>translational</i>, in the sense that the holonomy group of the natural flat connection induced on <span>\\(\\mathcal {D}\\)</span> is either trivial or isomorphic to <span>\\({\\mathbb {Z}}_2\\)</span>. We also prove that all four-dimensional rank-one ECS manifolds are noncompact, this time without having to assume genericity, as it is always the case in dimension four.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09929-6.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09929-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Pseudo-Riemannian manifolds with nonzero parallel Weyl tensor which are not locally symmetric are known as ECS manifolds. Every ECS manifold carries a distinguished null parallel distribution \(\mathcal {D}\), the rank \(d\in \{1,2\}\) of which is referred to as the rank of the manifold itself. Under a natural genericity assumption on the Weyl tensor, we fully describe the universal coverings of compact rank-one ECS manifolds. We then show that any generic compact rank-one ECS manifold must be translational, in the sense that the holonomy group of the natural flat connection induced on \(\mathcal {D}\) is either trivial or isomorphic to \({\mathbb {Z}}_2\). We also prove that all four-dimensional rank-one ECS manifolds are noncompact, this time without having to assume genericity, as it is always the case in dimension four.

紧致1阶ECS流形的度量结构
具有非零平行Weyl张量的非局部对称伪黎曼流形称为ECS流形。每个ECS流形都带有一个可区分的零平行分布\(\mathcal {D}\),其秩\(d\in \{1,2\}\)被称为流形本身的秩。在Weyl张量的自然泛型假设下,我们充分描述了紧1阶ECS流形的泛覆盖。然后我们证明了任何一般紧秩1的ECS流形都是可平移的,在某种意义上,在\(\mathcal {D}\)上诱导的自然平坦连接的完整群要么平凡,要么同构于\({\mathbb {Z}}_2\)。我们也证明了所有四维1阶ECS流形都是非紧的,这一次不需要假设一般性,因为在四维中总是这样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信