Grand Lebesgue Spaces with Mixed Local and Global Aggrandization and the Maximal and Singular Operators

Pub Date : 2023-10-28 DOI:10.1007/s10476-023-0243-1
H. Rafeiro, S. Samko, S. Umarkhadzhiev
{"title":"Grand Lebesgue Spaces with Mixed Local and Global Aggrandization and the Maximal and Singular Operators","authors":"H. Rafeiro,&nbsp;S. Samko,&nbsp;S. Umarkhadzhiev","doi":"10.1007/s10476-023-0243-1","DOIUrl":null,"url":null,"abstract":"<div><p>The approach to “locally” aggrandize Lebesgue spaces, previously suggested by the authors and based on the notion of “aggrandizer”, is combined with the usual “global” aggrandization. We study properties of such spaces including embeddings, dependence of the choice of the aggrandizer and, in particular, we discuss the question when these spaces are not new, coinciding with globally aggrandized spaces, and when they proved to be new. We study the boundedness of the maximal, singular, and maximal singular operators in the introduced spaces.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0243-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0243-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The approach to “locally” aggrandize Lebesgue spaces, previously suggested by the authors and based on the notion of “aggrandizer”, is combined with the usual “global” aggrandization. We study properties of such spaces including embeddings, dependence of the choice of the aggrandizer and, in particular, we discuss the question when these spaces are not new, coinciding with globally aggrandized spaces, and when they proved to be new. We study the boundedness of the maximal, singular, and maximal singular operators in the introduced spaces.

分享
查看原文
局部和全局混合扩张的大Lebesgue空间及其极大算子和奇异算子
作者先前提出的基于“强化”概念的“局部”强化勒贝格空间的方法与通常的“全局”强化相结合。我们研究了这些空间的性质,包括嵌入,强化剂选择的依赖性,特别是,我们讨论了这些空间何时不是新的问题,与全局强化空间一致,以及它们何时被证明是新的。研究了引入空间中极大、奇异和极大奇异算子的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信