Existence of solutions for some quasilinear elliptic system with weight and measure-valued right hand side

IF 0.9 Q2 MATHEMATICS
El Houcine Rami, Elhoussine Azroul, Abdelkrim Barbara
{"title":"Existence of solutions for some quasilinear elliptic system with weight and measure-valued right hand side","authors":"El Houcine Rami,&nbsp;Elhoussine Azroul,&nbsp;Abdelkrim Barbara","doi":"10.1007/s13370-023-01117-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(\\Omega \\)</span> be an open bounded domain in <span>\\(I\\!\\!R^{n},\\)</span> we prove the existence of a solution <i>u</i> for the nonlinear elliptic system </p><div><div><span>$$\\begin{aligned} \\text{(QES) } \\left\\{ \\begin{array}{ll} -div\\sigma \\left( x,u\\left( x\\right) ,Du\\left( x\\right) \\right) = \\mu &amp;{}\\quad \\text{ in } \\Omega \\\\ u = 0 &amp;{}\\quad \\text{ on } \\partial \\Omega , \\end{array} \\right. \\end{aligned}$$</span></div><div>\n (0.1)\n </div></div><p>where <span>\\(\\mu \\)</span> is Radon measure on <span>\\(\\Omega \\)</span> with finite mass. In particular, we show that if the coercivity rate of <span>\\(\\sigma \\)</span> lies in the range <span>\\(]\\frac{s+1}{s},(\\frac{s+1}{s})(2-\\frac{1}{n})]\\)</span> with <span>\\(s\\in \\left( \\frac{n}{p}\\,\\ \\infty \\right) \\cap \\left( \\frac{1}{p-1}\\,\\ \\infty \\right) ,\\)</span> then <i>u</i> is approximately differentiable and the equation holds with <i>Du</i> replaced by <span>\\(\\text{ apDu }\\)</span>. The proof relies on an approximation of <span>\\(\\mu \\)</span> by smooth functions <span>\\(f_{k}\\)</span> and a compactness result for the corresponding solutions <span>\\(u_{k}.\\)</span> This follows from a detailed analysis of the Young measure <span>\\(\\{\\delta _{u}(x)\\otimes \\vartheta (x)\\}\\)</span> generated by the sequence <span>\\({(u_{k},Du_{k})}\\)</span>, and the div-curl type inequality <span>\\(\\langle \\vartheta (x),\\sigma (x,u,\\cdot )\\rangle \\le \\overline{\\sigma }(x)\\langle \\vartheta (x),\\cdot \\rangle \\)</span> for the weak limit <span>\\(\\overline{\\sigma }\\)</span> of the sequence.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"34 4","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13370-023-01117-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-023-01117-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(\Omega \) be an open bounded domain in \(I\!\!R^{n},\) we prove the existence of a solution u for the nonlinear elliptic system

$$\begin{aligned} \text{(QES) } \left\{ \begin{array}{ll} -div\sigma \left( x,u\left( x\right) ,Du\left( x\right) \right) = \mu &{}\quad \text{ in } \Omega \\ u = 0 &{}\quad \text{ on } \partial \Omega , \end{array} \right. \end{aligned}$$
(0.1)

where \(\mu \) is Radon measure on \(\Omega \) with finite mass. In particular, we show that if the coercivity rate of \(\sigma \) lies in the range \(]\frac{s+1}{s},(\frac{s+1}{s})(2-\frac{1}{n})]\) with \(s\in \left( \frac{n}{p}\,\ \infty \right) \cap \left( \frac{1}{p-1}\,\ \infty \right) ,\) then u is approximately differentiable and the equation holds with Du replaced by \(\text{ apDu }\). The proof relies on an approximation of \(\mu \) by smooth functions \(f_{k}\) and a compactness result for the corresponding solutions \(u_{k}.\) This follows from a detailed analysis of the Young measure \(\{\delta _{u}(x)\otimes \vartheta (x)\}\) generated by the sequence \({(u_{k},Du_{k})}\), and the div-curl type inequality \(\langle \vartheta (x),\sigma (x,u,\cdot )\rangle \le \overline{\sigma }(x)\langle \vartheta (x),\cdot \rangle \) for the weak limit \(\overline{\sigma }\) of the sequence.

一类右侧具有权值和测度值的拟线性椭圆系统解的存在性
设\(\Omega \)为开放有界域,在\(I\!\!R^{n},\)中证明了非线性椭圆系统$$\begin{aligned} \text{(QES) } \left\{ \begin{array}{ll} -div\sigma \left( x,u\left( x\right) ,Du\left( x\right) \right) = \mu &{}\quad \text{ in } \Omega \\ u = 0 &{}\quad \text{ on } \partial \Omega , \end{array} \right. \end{aligned}$$(0.1)解u的存在性,其中\(\mu \)为有限质量的\(\Omega \)上的Radon测度。特别地,我们证明了如果\(\sigma \)的矫顽力率在\(]\frac{s+1}{s},(\frac{s+1}{s})(2-\frac{1}{n})]\)和\(s\in \left( \frac{n}{p}\,\ \infty \right) \cap \left( \frac{1}{p-1}\,\ \infty \right) ,\)范围内,则u是近似可微的,并且用\(\text{ apDu }\)代替Du时方程成立。该证明依赖于光滑函数\(f_{k}\)对\(\mu \)的近似和对应解的紧性结果\(u_{k}.\),这是对序列\({(u_{k},Du_{k})}\)生成的Young测度\(\{\delta _{u}(x)\otimes \vartheta (x)\}\)和序列弱极限\(\overline{\sigma }\)的div-curl型不等式\(\langle \vartheta (x),\sigma (x,u,\cdot )\rangle \le \overline{\sigma }(x)\langle \vartheta (x),\cdot \rangle \)的详细分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信