Christopher Blackwell, Pavel Simacek, Roger Crane, Shridhar Yarlagadda, Suresh G. Advani
{"title":"A model for the autoclave consolidation of prepregs during manufacturing of complex curvature parts","authors":"Christopher Blackwell, Pavel Simacek, Roger Crane, Shridhar Yarlagadda, Suresh G. Advani","doi":"10.1007/s12289-023-01784-x","DOIUrl":null,"url":null,"abstract":"<div><p>Autoclave consolidation is used to manufacture continuous fiber composites in applications that have strict part porosity requirements. The applied positive pressure in this process is attractive for reduction in part porosity. However, some part geometries can cause porosity issues even under positive pressure. One is the concave corner seen in an L-bracket geometry. Higher porosity is seen in areas of high curvature, hindering part quality. Since the autoclave process takes several hours and prepreg material is expensive, trial-and-error methods of resolving issues are not practical. In this work, a unique physics-based viscoelastic model is proposed to describe the mechanical behavior of uncured continuous fiber thermoset prepreg undergoing consolidation under hydrostatic pressure. This model considers stress due to compaction of the fiber network, compression of voids in the resin, and viscous stress from resin flow relative to fibers. The constitutive expressions for these are coupled to important mechanisms that occur during autoclave consolidation. The viscoelastic model is incorporated into the finite element analysis software ABAQUS/Standard using a UMAT subroutine. Numerical results are validated by analytic solutions and experimental comparison for flat and L-bracket geometries. A parametric study identifies important process and material parameters that influence the quality of the manufactured part.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"16 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01784-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Autoclave consolidation is used to manufacture continuous fiber composites in applications that have strict part porosity requirements. The applied positive pressure in this process is attractive for reduction in part porosity. However, some part geometries can cause porosity issues even under positive pressure. One is the concave corner seen in an L-bracket geometry. Higher porosity is seen in areas of high curvature, hindering part quality. Since the autoclave process takes several hours and prepreg material is expensive, trial-and-error methods of resolving issues are not practical. In this work, a unique physics-based viscoelastic model is proposed to describe the mechanical behavior of uncured continuous fiber thermoset prepreg undergoing consolidation under hydrostatic pressure. This model considers stress due to compaction of the fiber network, compression of voids in the resin, and viscous stress from resin flow relative to fibers. The constitutive expressions for these are coupled to important mechanisms that occur during autoclave consolidation. The viscoelastic model is incorporated into the finite element analysis software ABAQUS/Standard using a UMAT subroutine. Numerical results are validated by analytic solutions and experimental comparison for flat and L-bracket geometries. A parametric study identifies important process and material parameters that influence the quality of the manufactured part.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.