Shivsharan M. Mali, Shankar S. Narwade, Balaji B. Mulik, Vijay S. Sapner, Shubham J. Annadate, Bhaskar R. Sathe
{"title":"Nanostructured Ce/CeO2-rGO: Highly Sensitive and Selective Electrochemical Hydrogen Sulfide (H2S) Sensor","authors":"Shivsharan M. Mali, Shankar S. Narwade, Balaji B. Mulik, Vijay S. Sapner, Shubham J. Annadate, Bhaskar R. Sathe","doi":"10.1007/s12678-023-00839-6","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, cerium/cerium oxide nanoparticles have been decorated on reduced graphene oxide (Ce/CeO<sub>2</sub>-rGO) for room temperature electrochemical determination of H<sub>2</sub>S in 0.5 M KOH. There is a superior linear correlation between the peak current density and H<sub>2</sub>S content in the tested range of 1–5 ppm. Moreover, comparison to other abundant gases such as CO<sub>2</sub> shows no response at the potential of H<sub>2</sub>S oxidation, confirming no interference with H<sub>2</sub>S detection. It also reveals that the Ce/CeO<sub>2</sub>-rGO nanocomposite is a highly selective and sensitive system for the determination of H<sub>2</sub>S gas. Ce/CeO<sub>2</sub>-rGO synthesized by a simple chemical approach and further characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), field emission-scanning electron microscopy (FE-SEM), coupled energy dispersive analysis of X-ray (EDAX), and BET-surface area measurement confirms the porosity of synthesized nanomaterials and homogeneous decoration of Ce/CeO<sub>2</sub> nanoparticles on rGO sheets. The electrochemical studies, i.e., linear sweep voltammetry (LSV), of Ce/CeO<sub>2</sub>-rGO demonstrate the electrochemical H<sub>2</sub>S sensing at room temperature and for lower gas concentration (1 ppm) detection. The sensing mechanism is believed to be based on the modulation of the current and applied potential path across the electron exchange between the cerium oxide and rGO sites when exposed to H<sub>2</sub>S.</p><h3>Graphical Abstract</h3><p>One-pot synthesis of Ce/CeO<sub>2</sub>-GO hybrid nanostructure is of immense significance for H<sub>2</sub>S gas sensors. Here is a new superficial synthetic way intended for the synthesis of Ce/CeO<sub>2</sub>-GO nanocomposites through the sol–gel technique. Herein, we depict that the consequential Ce/CeO<sub>2</sub> NPs decorated on graphene oxide sheet material can give competent electrocatalysts for the H<sub>2</sub>S oxidation reaction in an alkaline condition. The current density of 5.9 mA/cm<sup>2</sup> on the tiny potential of 2.5 mV vs. SCE demonstrates huge catalytic bustle and stability.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":535,"journal":{"name":"Electrocatalysis","volume":"14 6","pages":"857 - 868"},"PeriodicalIF":2.7000,"publicationDate":"2023-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrocatalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12678-023-00839-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, cerium/cerium oxide nanoparticles have been decorated on reduced graphene oxide (Ce/CeO2-rGO) for room temperature electrochemical determination of H2S in 0.5 M KOH. There is a superior linear correlation between the peak current density and H2S content in the tested range of 1–5 ppm. Moreover, comparison to other abundant gases such as CO2 shows no response at the potential of H2S oxidation, confirming no interference with H2S detection. It also reveals that the Ce/CeO2-rGO nanocomposite is a highly selective and sensitive system for the determination of H2S gas. Ce/CeO2-rGO synthesized by a simple chemical approach and further characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), field emission-scanning electron microscopy (FE-SEM), coupled energy dispersive analysis of X-ray (EDAX), and BET-surface area measurement confirms the porosity of synthesized nanomaterials and homogeneous decoration of Ce/CeO2 nanoparticles on rGO sheets. The electrochemical studies, i.e., linear sweep voltammetry (LSV), of Ce/CeO2-rGO demonstrate the electrochemical H2S sensing at room temperature and for lower gas concentration (1 ppm) detection. The sensing mechanism is believed to be based on the modulation of the current and applied potential path across the electron exchange between the cerium oxide and rGO sites when exposed to H2S.
Graphical Abstract
One-pot synthesis of Ce/CeO2-GO hybrid nanostructure is of immense significance for H2S gas sensors. Here is a new superficial synthetic way intended for the synthesis of Ce/CeO2-GO nanocomposites through the sol–gel technique. Herein, we depict that the consequential Ce/CeO2 NPs decorated on graphene oxide sheet material can give competent electrocatalysts for the H2S oxidation reaction in an alkaline condition. The current density of 5.9 mA/cm2 on the tiny potential of 2.5 mV vs. SCE demonstrates huge catalytic bustle and stability.
期刊介绍:
Electrocatalysis is cross-disciplinary in nature, and attracts the interest of chemists, physicists, biochemists, surface and materials scientists, and engineers. Electrocatalysis provides the unique international forum solely dedicated to the exchange of novel ideas in electrocatalysis for academic, government, and industrial researchers. Quick publication of new results, concepts, and inventions made involving Electrocatalysis stimulates scientific discoveries and breakthroughs, promotes the scientific and engineering concepts that are critical to the development of novel electrochemical technologies.
Electrocatalysis publishes original submissions in the form of letters, research papers, review articles, book reviews, and educational papers. Letters are preliminary reports that communicate new and important findings. Regular research papers are complete reports of new results, and their analysis and discussion. Review articles critically and constructively examine development in areas of electrocatalysis that are of broad interest and importance. Educational papers discuss important concepts whose understanding is vital to advances in theoretical and experimental aspects of electrochemical reactions.