Multi-bit quantum random number generator from path-entangled single photons

IF 5.8 2区 物理与天体物理 Q1 OPTICS
K. Muhammed Shafi, Prateek Chawla, Abhaya S. Hegde, R. S. Gayatri, A. Padhye, C. M. Chandrashekar
{"title":"Multi-bit quantum random number generator from path-entangled single photons","authors":"K. Muhammed Shafi,&nbsp;Prateek Chawla,&nbsp;Abhaya S. Hegde,&nbsp;R. S. Gayatri,&nbsp;A. Padhye,&nbsp;C. M. Chandrashekar","doi":"10.1140/epjqt/s40507-023-00200-2","DOIUrl":null,"url":null,"abstract":"<div><p>Measurement outcomes on quantum systems exhibit inherent randomness and are fundamentally nondeterministic. This has enabled quantum physics to set new standards for the generation of true randomness with significant applications in the fields of cryptography, statistical simulations, and modeling of the nondeterministic behavior in various other fields. In this work, we present a scheme for the generation of multi-bit random numbers using path-entangled single photons. For the experimental demonstration, we generate a path-entangled state using single photons from spontaneous parametric down-conversion (SPDC) and assign a multi-qubit state for them in path basis. One-bit and two-bit random numbers are then generated by measuring entangled states in the path basis. In addition to passing the NIST tests for randomness, we also demonstrate the certification of quantumness and self-certification of quantum random number generator (QRNG) using Clauser, Horne, Shimony and Holt (CHSH) inequality violation. We also record the significantly low autocorrelation coefficient from the raw bits generated and this along with CHSH violation rules out multi-photon events and ensure the protection from photon splitting attack. Distribution of photons along multiple paths resulting in multiple bits from one photon extends the limit on bit generation rate imposed by the detection dead time of the individual detector. Thus, the path-entangled states can generate higher bitrates compared to scheme using entangled photon pair which are limited by the coincidence counts. We demonstrate this by generating a high rate of about 80 Mbps when the single photon detector saturates at around 28 Mcps and still show violation of CHSH inequality.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"10 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-023-00200-2","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-023-00200-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 2

Abstract

Measurement outcomes on quantum systems exhibit inherent randomness and are fundamentally nondeterministic. This has enabled quantum physics to set new standards for the generation of true randomness with significant applications in the fields of cryptography, statistical simulations, and modeling of the nondeterministic behavior in various other fields. In this work, we present a scheme for the generation of multi-bit random numbers using path-entangled single photons. For the experimental demonstration, we generate a path-entangled state using single photons from spontaneous parametric down-conversion (SPDC) and assign a multi-qubit state for them in path basis. One-bit and two-bit random numbers are then generated by measuring entangled states in the path basis. In addition to passing the NIST tests for randomness, we also demonstrate the certification of quantumness and self-certification of quantum random number generator (QRNG) using Clauser, Horne, Shimony and Holt (CHSH) inequality violation. We also record the significantly low autocorrelation coefficient from the raw bits generated and this along with CHSH violation rules out multi-photon events and ensure the protection from photon splitting attack. Distribution of photons along multiple paths resulting in multiple bits from one photon extends the limit on bit generation rate imposed by the detection dead time of the individual detector. Thus, the path-entangled states can generate higher bitrates compared to scheme using entangled photon pair which are limited by the coincidence counts. We demonstrate this by generating a high rate of about 80 Mbps when the single photon detector saturates at around 28 Mcps and still show violation of CHSH inequality.

从路径纠缠的单光子产生多比特量子随机数
量子系统的测量结果表现出固有的随机性,基本上是不确定的。这使得量子物理学能够在密码学、统计模拟和其他各种领域的不确定性行为建模领域为真正随机性的产生设定新的标准。在这项工作中,我们提出了一种利用路径纠缠的单光子生成多位随机数的方案。为了实验证明,我们利用自发参数下转换(SPDC)产生的单光子产生路径纠缠态,并在路径基上为它们分配多量子位态。然后通过测量路径基中的纠缠态来生成1位和2位随机数。除了通过NIST的随机性测试外,我们还利用Clauser, Horne, Shimony和Holt (CHSH)不等式违反证明了量子随机数生成器(QRNG)的量子性认证和自认证。我们还记录了原始比特产生的显著低自相关系数,这与CHSH违逆一起排除了多光子事件,并确保了对光子分裂攻击的保护。光子沿多个路径的分布导致一个光子产生多个比特,扩展了单个探测器的检测死区时间对比特生成率的限制。因此,路径纠缠态比使用受巧合数限制的纠缠光子对方案产生更高的比特率。当单光子探测器在28 Mcps左右饱和时,我们通过产生约80 Mbps的高速率来证明这一点,并且仍然显示违反CHSH不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信