Chady Ghnatios, Eloi Gravot, Victor Champaney, Nicolas Verdon, Nicolas Hascoët, Francisco Chinesta
{"title":"Polymer extrusion die design using a data-driven autoencoders technique","authors":"Chady Ghnatios, Eloi Gravot, Victor Champaney, Nicolas Verdon, Nicolas Hascoët, Francisco Chinesta","doi":"10.1007/s12289-023-01796-7","DOIUrl":null,"url":null,"abstract":"<div><p>Designing extrusion dies remains a tricky issue when considering polymers. In fact, polymers exhibit strong non-Newtonian rheology that manifest in noticeable viscoelastic behaviors as well as significant normal stress differences. As a consequence, when they are pushed through a die, an important die-swelling is observed, and consequently the final geometry of the extruded profile differs significantly from the one of the die. This behavior turns the die’s design into a difficult task, and its geometry must be defined in such a way that the extruded profile results in the targeted one. Numerical simulation was identified as a natural way for building and solving the inverse problem of defining the die, leading to the targeted extruded geometry. However, state-of-the-art rheological models reveal inaccuracies for the desired level of precision. In this paper, we propose a data-driven approach that, based on the accumulated experience on the extruded profiles for different dies, learns the relation enabling efficient die design.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01796-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Designing extrusion dies remains a tricky issue when considering polymers. In fact, polymers exhibit strong non-Newtonian rheology that manifest in noticeable viscoelastic behaviors as well as significant normal stress differences. As a consequence, when they are pushed through a die, an important die-swelling is observed, and consequently the final geometry of the extruded profile differs significantly from the one of the die. This behavior turns the die’s design into a difficult task, and its geometry must be defined in such a way that the extruded profile results in the targeted one. Numerical simulation was identified as a natural way for building and solving the inverse problem of defining the die, leading to the targeted extruded geometry. However, state-of-the-art rheological models reveal inaccuracies for the desired level of precision. In this paper, we propose a data-driven approach that, based on the accumulated experience on the extruded profiles for different dies, learns the relation enabling efficient die design.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.