Single Peak Solutions for a Schrödinger Equation with Variable Exponent

Pub Date : 2023-11-15 DOI:10.1007/s10114-023-2616-6
Zhong Yuan Liu, Peng Luo, Hua Fei Xie
{"title":"Single Peak Solutions for a Schrödinger Equation with Variable Exponent","authors":"Zhong Yuan Liu,&nbsp;Peng Luo,&nbsp;Hua Fei Xie","doi":"10.1007/s10114-023-2616-6","DOIUrl":null,"url":null,"abstract":"<div><p>We study the following Schrödinger equation with variable exponent </p><div><div><span>$$ - \\Delta u + u = {u^{p + \\epsilon a(x)}},\\,\\,\\,u &gt; 0\\,\\,{\\rm{in}}\\,\\,{\\mathbb{R}^N},$$</span></div></div><p> where <span>\\(\\epsilon &gt; 0,\\,\\,1 &lt; p &lt; {{N + 2} \\over {N - 2}},\\,\\,a(x) \\in {C^1}({\\mathbb{R}^N}) \\cap {L^\\infty }({\\mathbb{R}^N}),\\,\\,N \\ge 3\\)</span> Under certain assumptions on a vector field related to <i>a</i>(<i>x</i>), we use the Lyapunov–Schmidt reduction to show the existence of single peak solutions to the above problem. We also obtain local uniqueness and exact multiplicity results for this problem by the Pohozaev type identity.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-023-2616-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the following Schrödinger equation with variable exponent

$$ - \Delta u + u = {u^{p + \epsilon a(x)}},\,\,\,u > 0\,\,{\rm{in}}\,\,{\mathbb{R}^N},$$

where \(\epsilon > 0,\,\,1 < p < {{N + 2} \over {N - 2}},\,\,a(x) \in {C^1}({\mathbb{R}^N}) \cap {L^\infty }({\mathbb{R}^N}),\,\,N \ge 3\) Under certain assumptions on a vector field related to a(x), we use the Lyapunov–Schmidt reduction to show the existence of single peak solutions to the above problem. We also obtain local uniqueness and exact multiplicity results for this problem by the Pohozaev type identity.

分享
查看原文
变指数Schrödinger方程的单峰解
我们研究了以下Schrödinger变指数方程$$ - \Delta u + u = {u^{p + \epsilon a(x)}},\,\,\,u > 0\,\,{\rm{in}}\,\,{\mathbb{R}^N},$$,其中\(\epsilon > 0,\,\,1 < p < {{N + 2} \over {N - 2}},\,\,a(x) \in {C^1}({\mathbb{R}^N}) \cap {L^\infty }({\mathbb{R}^N}),\,\,N \ge 3\)在与a(x)相关的向量场的某些假设下,我们使用Lyapunov-Schmidt约简来证明上述问题的单峰解的存在性。利用Pohozaev型恒等式,得到了该问题的局部唯一性和精确多重性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信