Group LASSO for Change-points in Functional Time Series

Pub Date : 2023-11-15 DOI:10.1007/s10114-023-1665-1
Chang Xiong Chi, Rong Mao Zhang
{"title":"Group LASSO for Change-points in Functional Time Series","authors":"Chang Xiong Chi,&nbsp;Rong Mao Zhang","doi":"10.1007/s10114-023-1665-1","DOIUrl":null,"url":null,"abstract":"<div><p>Multiple change-points estimation for functional time series is studied in this paper. The change-point problem is first transformed into a high-dimensional sparse estimation problem via basis functions. Group least absolute shrinkage and selection operator (LASSO) is then applied to estimate the number and the locations of possible change points. However, the group LASSO (GLASSO) always overestimate the true points. To circumvent this problem, a further Information Criterion (IC) is applied to eliminate the redundant estimated points. It is shown that the proposed two-step procedure estimates the number and the locations of the change-points consistently. Simulations and two temperature data examples are also provided to illustrate the finite sample performance of the proposed method.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-023-1665-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple change-points estimation for functional time series is studied in this paper. The change-point problem is first transformed into a high-dimensional sparse estimation problem via basis functions. Group least absolute shrinkage and selection operator (LASSO) is then applied to estimate the number and the locations of possible change points. However, the group LASSO (GLASSO) always overestimate the true points. To circumvent this problem, a further Information Criterion (IC) is applied to eliminate the redundant estimated points. It is shown that the proposed two-step procedure estimates the number and the locations of the change-points consistently. Simulations and two temperature data examples are also provided to illustrate the finite sample performance of the proposed method.

分享
查看原文
函数时间序列中变化点的群LASSO
研究了泛函时间序列的多变点估计问题。首先通过基函数将变点问题转化为高维稀疏估计问题。然后应用组最小绝对收缩和选择算子(LASSO)来估计可能变化点的数量和位置。然而,组LASSO (GLASSO)总是高估真实点。为了避免这一问题,进一步采用信息准则(Information Criterion, IC)来消除冗余估计点。结果表明,该方法能较好地估计出变化点的数量和位置。最后通过仿真和两个温度数据实例说明了该方法的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信