Equilibrium Point and Phase Portrait of a Model for Flow of Tixotropic Media Accounting for Structure Evolution

IF 0.3 Q4 MECHANICS
A. V. Khokhlov
{"title":"Equilibrium Point and Phase Portrait of a Model for Flow of Tixotropic Media Accounting for Structure Evolution","authors":"A. V. Khokhlov","doi":"10.3103/S0027133023040039","DOIUrl":null,"url":null,"abstract":"<p>We continue the systematic analytical study of a nonlinear Maxwell-type constitutive equation for shear flow for thixotropic viscoelastic media accounting for interaction of deformation process and structure evolution, namely, the influence of the kinetics formation and breakage of chain cross-links, agglomerations of molecules and crystallites on viscosity and shear modulus and deformation influence on the kinetics. We formulated it in the previous article and reduced it to the set of two nonlinear autonomous differential equations for two unknown functions (namely, the stress and relative cross-links density). We examine the phase portrait of the system for arbitrary (increasing) material function and six (positive) material parameters governing the model and prove that the (unique) equilibrium point is stable and the only three cases are realized: the equilibrium point is either a stable sink, or a degenerated stable sink, or a stable spiral sink. We found criteria for every case in the form of explicit restrictions on the material function and parameters and shear rate.</p>","PeriodicalId":710,"journal":{"name":"Moscow University Mechanics Bulletin","volume":"78 4","pages":"91 - 101"},"PeriodicalIF":0.3000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow University Mechanics Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.3103/S0027133023040039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

We continue the systematic analytical study of a nonlinear Maxwell-type constitutive equation for shear flow for thixotropic viscoelastic media accounting for interaction of deformation process and structure evolution, namely, the influence of the kinetics formation and breakage of chain cross-links, agglomerations of molecules and crystallites on viscosity and shear modulus and deformation influence on the kinetics. We formulated it in the previous article and reduced it to the set of two nonlinear autonomous differential equations for two unknown functions (namely, the stress and relative cross-links density). We examine the phase portrait of the system for arbitrary (increasing) material function and six (positive) material parameters governing the model and prove that the (unique) equilibrium point is stable and the only three cases are realized: the equilibrium point is either a stable sink, or a degenerated stable sink, or a stable spiral sink. We found criteria for every case in the form of explicit restrictions on the material function and parameters and shear rate.

考虑结构演化的转向介质流动模型的平衡点和相图
我们继续系统地分析研究了触变粘弹性介质剪切流动的非线性maxwell型本构方程,该方程考虑了变形过程和结构演化的相互作用,即链交联的形成和断裂、分子和晶体的团聚对粘度和剪切模量的动力学影响以及变形对动力学的影响。我们在前一篇文章中将其表述为两个未知函数(即应力和相对交联密度)的两个非线性自治微分方程的集合。我们研究了任意(增加)材料函数和控制模型的六个(正)材料参数的系统相肖像,并证明了(唯一)平衡点是稳定的,并且只有三种情况是实现的:平衡点要么是稳定汇,要么是退化稳定汇,要么是稳定螺旋汇。我们找到了每种情况的标准,以明确限制材料功能和参数以及剪切速率的形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
9
期刊介绍: Moscow University Mechanics Bulletin  is the journal of scientific publications, reflecting the most important areas of mechanics at Lomonosov Moscow State University. The journal is dedicated to research in theoretical mechanics, applied mechanics and motion control, hydrodynamics, aeromechanics, gas and wave dynamics, theory of elasticity, theory of elasticity and mechanics of composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信