Free Boundary Minimal Annuli Immersed in the Unit Ball

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Isabel Fernández, Laurent Hauswirth, Pablo Mira
{"title":"Free Boundary Minimal Annuli Immersed in the Unit Ball","authors":"Isabel Fernández,&nbsp;Laurent Hauswirth,&nbsp;Pablo Mira","doi":"10.1007/s00205-023-01943-z","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a family of compact free boundary minimal annuli immersed in the unit ball <span>\\(\\mathbb {B}^3\\)</span> of <span>\\(\\mathbb {R}^3\\)</span>, the first such examples other than the critical catenoid. This solves a problem formulated by Nitsche in 1985. These annuli are symmetric with respect to two orthogonal planes and a finite group of rotations around an axis, and are foliated by spherical curvature lines. We show that the only free boundary minimal annulus embedded in <span>\\(\\mathbb {B}^3\\)</span> foliated by spherical curvature lines is the critical catenoid; in particular, the minimal annuli that we construct are not embedded. On the other hand, we also construct families of non-rotational compact embedded capillary minimal annuli in <span>\\(\\mathbb {B}^3\\)</span>. Their existence solves in the negative a problem proposed by Wente in 1995.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-023-01943-z.pdf","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-023-01943-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8

Abstract

We construct a family of compact free boundary minimal annuli immersed in the unit ball \(\mathbb {B}^3\) of \(\mathbb {R}^3\), the first such examples other than the critical catenoid. This solves a problem formulated by Nitsche in 1985. These annuli are symmetric with respect to two orthogonal planes and a finite group of rotations around an axis, and are foliated by spherical curvature lines. We show that the only free boundary minimal annulus embedded in \(\mathbb {B}^3\) foliated by spherical curvature lines is the critical catenoid; in particular, the minimal annuli that we construct are not embedded. On the other hand, we also construct families of non-rotational compact embedded capillary minimal annuli in \(\mathbb {B}^3\). Their existence solves in the negative a problem proposed by Wente in 1995.

Abstract Image

自由边界最小环空浸入单位球
在\(\mathbb {R}^3\)的单位球\(\mathbb {B}^3\)中构造了一个紧致自由边界极小环空族,这是除临界链面外的第一个此类例子。这解决了尼采在1985年提出的一个问题。这些环空相对于两个正交平面和围绕一个轴的有限组旋转是对称的,并且由球面曲率线分叶。我们证明了由球面曲率线片理的\(\mathbb {B}^3\)中嵌入的唯一自由边界最小环是临界链状体;特别是,我们构建的最小环空没有嵌入。另一方面,我们也在\(\mathbb {B}^3\)中构造了非旋转致密嵌入毛细管最小环空族。它们的存在从反面解决了文特在1995年提出的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信