Andrea Braides, Andrea Causin, Margherita Solci, Lev Truskinovsky
{"title":"Beyond the Classical Cauchy–Born Rule","authors":"Andrea Braides, Andrea Causin, Margherita Solci, Lev Truskinovsky","doi":"10.1007/s00205-023-01942-0","DOIUrl":null,"url":null,"abstract":"<div><p>Physically motivated variational problems involving non-convex energies are often formulated in a discrete setting and contain boundary conditions. The long-range interactions in such problems, combined with constraints imposed by lattice discreteness, can give rise to the phenomenon of geometric frustration even in a one-dimensional setting. While non-convexity entails the formation of microstructures, incompatibility between interactions operating at different scales can produce nontrivial mixing effects which are exacerbated in the case of incommensurability between the optimal microstructures and the scale of the underlying lattice. Unraveling the intricacies of the underlying interplay between non-convexity, non-locality and discreteness represents the main goal of this study. While in general one cannot expect that ground states in such problems possess global properties, such as periodicity, in some cases the appropriately defined ‘global’ solutions exist, and are sufficient to describe the corresponding continuum (homogenized) limits. We interpret those cases as complying with a Generalized Cauchy–Born (GCB) rule, and present a new class of problems with geometrical frustration which comply with GCB rule in one range of (loading) parameters while being strictly outside this class in a complimentary range. A general approach to problems with such ‘mixed’ behavior is developed.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-023-01942-0","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Physically motivated variational problems involving non-convex energies are often formulated in a discrete setting and contain boundary conditions. The long-range interactions in such problems, combined with constraints imposed by lattice discreteness, can give rise to the phenomenon of geometric frustration even in a one-dimensional setting. While non-convexity entails the formation of microstructures, incompatibility between interactions operating at different scales can produce nontrivial mixing effects which are exacerbated in the case of incommensurability between the optimal microstructures and the scale of the underlying lattice. Unraveling the intricacies of the underlying interplay between non-convexity, non-locality and discreteness represents the main goal of this study. While in general one cannot expect that ground states in such problems possess global properties, such as periodicity, in some cases the appropriately defined ‘global’ solutions exist, and are sufficient to describe the corresponding continuum (homogenized) limits. We interpret those cases as complying with a Generalized Cauchy–Born (GCB) rule, and present a new class of problems with geometrical frustration which comply with GCB rule in one range of (loading) parameters while being strictly outside this class in a complimentary range. A general approach to problems with such ‘mixed’ behavior is developed.
期刊介绍:
The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.