D. D. Haroske, H.-G. Leopold, S. D. Moura, L. Skrzypczak
{"title":"Nuclear and Compact Embeddings in Function Spaces of Generalised Smoothness","authors":"D. D. Haroske, H.-G. Leopold, S. D. Moura, L. Skrzypczak","doi":"10.1007/s10476-023-0238-y","DOIUrl":null,"url":null,"abstract":"<div><p>We study nuclear embeddings for function spaces of generalised smoothness defined on a bounded Lipschitz domain Ω ⊂ ℝ<sup><i>d</i></sup>. This covers, in particular, the well-known situation for spaces of Besov and Triebel–Lizorkin spaces defined on bounded domains as well as some first results for function spaces of logarithmic smoothness. In addition, we provide some new, more general approach to compact embeddings for such function spaces, which also unifies earlier results in different settings, including also the study of their entropy numbers. Again we rely on suitable wavelet decomposition techniques and the famous Tong result (1969) about nuclear diagonal operators acting in <i>∓</i><sub><i>r</i></sub> spaces, which we could recently extend to the vector-valued setting needed here.</p></div>","PeriodicalId":55518,"journal":{"name":"Analysis Mathematica","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10476-023-0238-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis Mathematica","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0238-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study nuclear embeddings for function spaces of generalised smoothness defined on a bounded Lipschitz domain Ω ⊂ ℝd. This covers, in particular, the well-known situation for spaces of Besov and Triebel–Lizorkin spaces defined on bounded domains as well as some first results for function spaces of logarithmic smoothness. In addition, we provide some new, more general approach to compact embeddings for such function spaces, which also unifies earlier results in different settings, including also the study of their entropy numbers. Again we rely on suitable wavelet decomposition techniques and the famous Tong result (1969) about nuclear diagonal operators acting in ∓r spaces, which we could recently extend to the vector-valued setting needed here.
期刊介绍:
Traditionally the emphasis of Analysis Mathematica is classical analysis, including real functions (MSC 2010: 26xx), measure and integration (28xx), functions of a complex variable (30xx), special functions (33xx), sequences, series, summability (40xx), approximations and expansions (41xx).
The scope also includes potential theory (31xx), several complex variables and analytic spaces (32xx), harmonic analysis on Euclidean spaces (42xx), abstract harmonic analysis (43xx).
The journal willingly considers papers in difference and functional equations (39xx), functional analysis (46xx), operator theory (47xx), analysis on topological groups and metric spaces, matrix analysis, discrete versions of topics in analysis, convex and geometric analysis and the interplay between geometry and analysis.