{"title":"Absolutely closed semigroups.","authors":"Taras Banakh, Serhii Bardyla","doi":"10.1007/s13398-023-01519-2","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math><mi>C</mi></math> be a class of topological semigroups. A semigroup <i>X</i> is called <i>absolutely</i> <math><mi>C</mi></math><i>-closed</i> if for any homomorphism <math><mrow><mi>h</mi><mo>:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow></math> to a topological semigroup <math><mrow><mi>Y</mi><mo>∈</mo><mi>C</mi></mrow></math>, the image <i>h</i>[<i>X</i>] is closed in <i>Y</i>. Let <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mn>1</mn></mrow></msub><mi>S</mi></mrow></math>, <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mn>2</mn></mrow></msub><mi>S</mi></mrow></math>, and <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mi>z</mi></mrow></msub><mi>S</mi></mrow></math> be the classes of <math><msub><mi>T</mi><mn>1</mn></msub></math>, Hausdorff, and Tychonoff zero-dimensional topological semigroups, respectively. We prove that a commutative semigroup <i>X</i> is absolutely <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mi>z</mi></mrow></msub><mi>S</mi></mrow></math>-closed if and only if <i>X</i> is absolutely <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mn>2</mn></mrow></msub><mi>S</mi></mrow></math>-closed if and only if <i>X</i> is chain-finite, bounded, group-finite and Clifford + finite. On the other hand, a commutative semigroup <i>X</i> is absolutely <math><mrow><msub><mi>T</mi><mrow><mspace></mspace><mn>1</mn></mrow></msub><mi>S</mi></mrow></math>-closed if and only if <i>X</i> is finite. Also, for a given absolutely <math><mi>C</mi></math>-closed semigroup <i>X</i> we detect absolutely <math><mi>C</mi></math>-closed subsemigroups in the center of <i>X</i>.</p>","PeriodicalId":54471,"journal":{"name":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","volume":"118 1","pages":"23"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10632307/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-Matematicas","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13398-023-01519-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let be a class of topological semigroups. A semigroup X is called absolutely-closed if for any homomorphism to a topological semigroup , the image h[X] is closed in Y. Let , , and be the classes of , Hausdorff, and Tychonoff zero-dimensional topological semigroups, respectively. We prove that a commutative semigroup X is absolutely -closed if and only if X is absolutely -closed if and only if X is chain-finite, bounded, group-finite and Clifford + finite. On the other hand, a commutative semigroup X is absolutely -closed if and only if X is finite. Also, for a given absolutely -closed semigroup X we detect absolutely -closed subsemigroups in the center of X.
期刊介绍:
The journal publishes, in English language only, high-quality Research Articles covering Algebra; Applied Mathematics; Computational Sciences; Geometry and Topology; Mathematical Analysis; Statistics and Operations Research. Also featured are Survey Articles in every mathematical field.