Yang Xue, Xiaomeng Pei, Yuting Xia, Hengguang Chen, Hao Yu, Wei Wang, Dagan Mao
{"title":"RGMb expression in goat uterine tissues: possible role of RGMb in the proliferation and apoptosis of endometrial epithelial cells.","authors":"Yang Xue, Xiaomeng Pei, Yuting Xia, Hengguang Chen, Hao Yu, Wei Wang, Dagan Mao","doi":"10.1071/RD23121","DOIUrl":null,"url":null,"abstract":"<p><p>Context Bone morphogenetic proteins (BMPs) play an important role in the uteri. Repulsive guidance molecule b (RGMb; a.k.a. Dragon) has been confirmed as the coreceptor of BMPs to function through drosophila mothers against decapentaplegic protein (Smads) and mitogen-activated protein kinases (MAPK) pathways. We hypothesise that RGMb regulates the uterine function through the Smads and MAPK pathways. Aims This study aimed to investigate the expression of RGMb in goat uteri and the potential role of RGMb in the endometrial epithelial cells (EECs). Methods The localisation of RGMb in goat uterine tissues was detected by immunohistochemistry (IHC), EECs were isolated and transfected with siRNA to investigate the role of RGMb in proliferation, and apoptosis. The expression levels of Smads and MAPK members was measured by western blot (WB) and real-time PCR (RT-PCR). Key results IHC showed that RGMb was localised in goat endometrial luminal cells, glandular epithelial cells, and circular muscle fibres, but not in stromal cells. RT-PCR results showed that treatment with RGMb siRNA suppressed the expressions of proliferation-related genes cyclin D1 (CCND1 , P =0.0291), cyclin-dependent kinase 2 (CDK2 P =0.0107), and proliferating cell nuclear antigen (PCNA, P =0.0508), leading to the reduced viability of EECs (P =0.0010). WB results showed that the expression ratio of cleaved-caspase 3/caspase 3 (P =0.0013) was markedly increased after RGMb siRNA transfection. Likewise, the level of phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2, P =0.0068) and p-Smad1/5/8 (P =0.0011) decreased significantly, while there were no appreciable differences in the level of p-P38 MAPK expression (P >0.05). Conclusions RGMb might participate in the regulation of cell proliferation and apoptosis through Smads and ERK signalling pathways in goat EECs. Implications RGMb is involved in regulating the proliferation and apoptosis in goat endometrial epithelial cells.</p>","PeriodicalId":20932,"journal":{"name":"Reproduction, fertility, and development","volume":" ","pages":"723-732"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction, fertility, and development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/RD23121","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Context Bone morphogenetic proteins (BMPs) play an important role in the uteri. Repulsive guidance molecule b (RGMb; a.k.a. Dragon) has been confirmed as the coreceptor of BMPs to function through drosophila mothers against decapentaplegic protein (Smads) and mitogen-activated protein kinases (MAPK) pathways. We hypothesise that RGMb regulates the uterine function through the Smads and MAPK pathways. Aims This study aimed to investigate the expression of RGMb in goat uteri and the potential role of RGMb in the endometrial epithelial cells (EECs). Methods The localisation of RGMb in goat uterine tissues was detected by immunohistochemistry (IHC), EECs were isolated and transfected with siRNA to investigate the role of RGMb in proliferation, and apoptosis. The expression levels of Smads and MAPK members was measured by western blot (WB) and real-time PCR (RT-PCR). Key results IHC showed that RGMb was localised in goat endometrial luminal cells, glandular epithelial cells, and circular muscle fibres, but not in stromal cells. RT-PCR results showed that treatment with RGMb siRNA suppressed the expressions of proliferation-related genes cyclin D1 (CCND1 , P =0.0291), cyclin-dependent kinase 2 (CDK2 P =0.0107), and proliferating cell nuclear antigen (PCNA, P =0.0508), leading to the reduced viability of EECs (P =0.0010). WB results showed that the expression ratio of cleaved-caspase 3/caspase 3 (P =0.0013) was markedly increased after RGMb siRNA transfection. Likewise, the level of phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2, P =0.0068) and p-Smad1/5/8 (P =0.0011) decreased significantly, while there were no appreciable differences in the level of p-P38 MAPK expression (P >0.05). Conclusions RGMb might participate in the regulation of cell proliferation and apoptosis through Smads and ERK signalling pathways in goat EECs. Implications RGMb is involved in regulating the proliferation and apoptosis in goat endometrial epithelial cells.
期刊介绍:
Reproduction, Fertility and Development is an international journal for the publication of original and significant contributions on vertebrate reproductive and developmental biology. Subject areas include, but are not limited to: physiology, biochemistry, cell and molecular biology, endocrinology, genetics and epigenetics, behaviour, immunology and the development of reproductive technologies in humans, livestock and wildlife, and in pest management.
Reproduction, Fertility and Development is a valuable resource for research scientists working in industry or academia on reproductive and developmental biology, clinicians and veterinarians interested in the basic science underlying their disciplines, and students.
Reproduction, Fertility and Development is the official journal of the International Embryo Technology Society and the Society for Reproductive Biology.
Reproduction, Fertility and Development is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.