{"title":"Lancet: Better network resilience by designing for pruned failure sets","authors":"Yiyang Chang, Chuan Jiang, Ashish Chandra, Sanjay G. Rao, Mohit Tawarmalani","doi":"10.1145/3393691.3394195","DOIUrl":null,"url":null,"abstract":"Recently, researchers have started exploring the design of route protection schemes that ensure networks can sustain traffic demand without congestion under failures. Existing approaches focus on ensuring worst-case performance over simultaneous f-failure scenarios is acceptable. Unfortunately, even a single bad scenario may render the schemes unable to protect against any f-failure scenario. In this paper, we present Lancet, a system designed to handle most failures when not all can be tackled. Lancet comprises three components: (i) an algorithm to analyze which failure scenarios the network can intrinsically handle which provides a benchmark for any protection routing scheme, and guides the design of new schemes; (ii) an approach to efficiently design a protection schemes for more general failure sets than all f-failure scenarios; and (iii) techniques to determine which of combinatorially many scenarios to design for. Our evaluations with real topologies and validations on an emulation testbed show that Lancet outperforms a worst-case approach by protecting against many more scenarios, and can even match the scenarios handled by optimal network response.","PeriodicalId":188517,"journal":{"name":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstracts of the 2020 SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3393691.3394195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Recently, researchers have started exploring the design of route protection schemes that ensure networks can sustain traffic demand without congestion under failures. Existing approaches focus on ensuring worst-case performance over simultaneous f-failure scenarios is acceptable. Unfortunately, even a single bad scenario may render the schemes unable to protect against any f-failure scenario. In this paper, we present Lancet, a system designed to handle most failures when not all can be tackled. Lancet comprises three components: (i) an algorithm to analyze which failure scenarios the network can intrinsically handle which provides a benchmark for any protection routing scheme, and guides the design of new schemes; (ii) an approach to efficiently design a protection schemes for more general failure sets than all f-failure scenarios; and (iii) techniques to determine which of combinatorially many scenarios to design for. Our evaluations with real topologies and validations on an emulation testbed show that Lancet outperforms a worst-case approach by protecting against many more scenarios, and can even match the scenarios handled by optimal network response.