Why does output normalization create problems in multiple classifier systems?

H. Altınçay, M. Demirekler
{"title":"Why does output normalization create problems in multiple classifier systems?","authors":"H. Altınçay, M. Demirekler","doi":"10.1109/ICPR.2002.1048417","DOIUrl":null,"url":null,"abstract":"A combination of classifiers is a promising direction for obtaining better classification systems. However the outputs of different classifiers may have different scales and hence the classifier outputs are incomparable. Incomparability of the classifier output scores is a major problem in the combination of different classification systems. In order to avoid this problem, the measurement level classifier outputs are generally normalized. However recent studies have proven that output normalization may provide some problems. For instance, the multiple classifier system's performance may become worse than that of a single individual classifier. This paper presents some interesting observations about the reason why such undesirable behavior occurs.","PeriodicalId":159502,"journal":{"name":"Object recognition supported by user interaction for service robots","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Object recognition supported by user interaction for service robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2002.1048417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

A combination of classifiers is a promising direction for obtaining better classification systems. However the outputs of different classifiers may have different scales and hence the classifier outputs are incomparable. Incomparability of the classifier output scores is a major problem in the combination of different classification systems. In order to avoid this problem, the measurement level classifier outputs are generally normalized. However recent studies have proven that output normalization may provide some problems. For instance, the multiple classifier system's performance may become worse than that of a single individual classifier. This paper presents some interesting observations about the reason why such undesirable behavior occurs.
为什么输出归一化会在多个分类器系统中产生问题?
分类器的组合是获得更好的分类系统的一个有前途的方向。然而,不同分类器的输出可能有不同的尺度,因此分类器的输出是不可比较的。分类器输出分数的不可比较性是不同分类系统组合时的一个主要问题。为了避免这个问题,测量级分类器的输出通常被归一化。然而,最近的研究表明,输出归一化可能会带来一些问题。例如,多分类器系统的性能可能会比单个分类器的性能差。本文就这种不良行为发生的原因提出了一些有趣的观察结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信