Paolo Cignoni, C. Montani, E. Puppo, Roberto Scopigno
{"title":"Optimal isosurface extraction from irregular volume data","authors":"Paolo Cignoni, C. Montani, E. Puppo, Roberto Scopigno","doi":"10.1109/SVV.1996.558040","DOIUrl":null,"url":null,"abstract":"A method is proposed which supports the extraction of isosurfaces from irregular volume data, represented by tetrahedral decomposition, in optimal time. The method is based on a data structure called interval tree, which encodes a set of intervals on the real line, and supports efficient retrieval of all intervals containing a given value. Each cell in the volume data is associated with an interval bounded by the extreme values of the field in the cell. All cells intersected by a given isosurface are extracted in O(m+log h) time, with m the output size and h the number of different extreme values (min or max). The implementation of the method is simple. Tests have shown that its practical performance reflects the theoretical optimality.","PeriodicalId":168501,"journal":{"name":"Proceedings of 1996 Symposium on Volume Visualization","volume":"166 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1996 Symposium on Volume Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SVV.1996.558040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97
Abstract
A method is proposed which supports the extraction of isosurfaces from irregular volume data, represented by tetrahedral decomposition, in optimal time. The method is based on a data structure called interval tree, which encodes a set of intervals on the real line, and supports efficient retrieval of all intervals containing a given value. Each cell in the volume data is associated with an interval bounded by the extreme values of the field in the cell. All cells intersected by a given isosurface are extracted in O(m+log h) time, with m the output size and h the number of different extreme values (min or max). The implementation of the method is simple. Tests have shown that its practical performance reflects the theoretical optimality.